User Tools

Site Tools


You are in Geoinformatics - Creative Commons :: Introduction to Earth System Science Modelling :: Classes 2023

CST-323: Introduction to Earth System Modelling/CAP-465: Modelling and Simulation of Earth Systems (INPE Course 2023)

  • Professors: Pedro R. Andrade, Gilberto Câmara
  • Lectures: Mondays and Thursdays, 14h00-17h00


Earth System Science is an interdisciplinary area that deals with the different aspects of interaction between society and nature. At the broadest level, Earth System Science models deal with natural systems (Climate, Ecosystems, Biogeochemical cycles, Hydrology) and its interaction with society (Economics, Sociology, Energy, Agriculture, Urbanisation, Demographics). Since Earth System Science covers a broad area of expertise, this course covers the basic fundamentals of nature-society interactions, by describing some of the foundational models in the area.

The course covers three main areas of expertise: (a) System Dynamics; (b) Environmental spatially-explicit models; © Social simulation. In the first part, we cover the basis of systems dynamics, following the Donella Meadows book, which is a good introduction to the field. In the second, we draw on some examples from the book of Andrew Ford (“Modelling the Environment”). In the third part, we focus on agent-based modelling, taking some examples from the literature (such as the Sugarscape model).

Considering the broad nature of the field, the course does not require a background on Natural Sciences. It tries to present the basics of modelling through examples taken from the literature.


“The biggest problem with models is the fact that they are made by humans who tend to shape or use their models in ways that mirror their own notion of what a desirable outcome would be.” (John Firor, formed director of NCAR, cited in Myanna Lahsen's paper “Seductive Simulations”.

There are certain similarities between a work of fiction and a model: Just as we may wonder how much the characters in a novel are drawn from real life and how much is artifice, we might ask the same of a model; How much is based on observation and measurement of accessible phenomena, how much is based on informed judgment, and how much is convenience? (Naomi Oreskes, professor of History of Science, also cited by Myanna Lahsen).

“A model is clear, decisive, and positive, but it is believed by no one but the man who created it. Observations, on the other hand, are messy, inexact things, which are believed by everyone except the man who did that work”. Harlow Shapley, American astronomer

Conclusion: to understand what models are, a scientist needs to be able to develop models himself. He needs to master computer programs that allow him to grasp the basics of modelling activity. He needs to be understand the different techniques used in modelling and their limitations.




Title Models Scenarios Concepts Exercises
1 Lógica de Programação
2 Lua for TerraME nil, number, boolean, string, table, function Lua exercises
3 Systems Dynamics Tub (sysdyn) tub-scenarios (sysdyn) Model, Event, Timer, Chart
4 Feedbacks Coffee, PopulationGrowth (sysdyn) coffee-scenarios, population-scenarios-1, population-scenarios-2 (sysdyn) Environment, instance of Model Water in the Dam Deadline: 25 July 23h59
5 Epidemics SIR (sysdyn) infection-scenarios-1, infection-scenarios-2, infection-scenarios-3 (sysdyn)
6 Chaos ChaoticGrowth (sysdyn), Lorenz (sysdyn)
7 Predator-Prey PredatorPrey (sysdyn)
8 Cellular Automata Life (ca) Cell, CellularSpace, Neighborhood, Map, Random
9 Fire in the Forest Fire (ca) Fire in the Forest Deadline: 14 Aug 23h59BRT
10 Runoff Runoff (gis)
11 Cellular Data Cabeca de Boi (gis)
12 Deforestation
13 Agent-based Modeling
14 Predator Prey
15 Game Theory

Final Project

Deadline: 04 Sep 23h59 BRT

The final project consists of an implementation and discussion of a model described in a scientific paper that uses one of the paradigms presented during the course. There are some suggestions below. In case of replicating a paper, it is possible to submit the results to ReScience C.

System Dynamics

Cellular Automata

Ian, Paula, Nayara Emmendorfer, Leonardo Ramos, and Luiz Alberto Diaz Rodrigues. “Um modelo de autômatos celulares para o espalhamento geográfico de epidemias.” (2001).
Fábio e Leila Vilcarromero, Ângela CS, Rosana SM Jafelice, and Laécio C. Barros. “Autômato Celular no Estudo de um Modelo Presa-Predador.” (2010): 147-156.
Matheus S. G. Berjak, J. W. Hearne (2002) An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Ecological Modelling 148(2):133–15
Fisch, Robert, Janko Gravner, and David Griffeath. "Threshold-range scaling of excitable cellular automata." Statistics and Computing 1.1 (1991): 23-39.
Fisch, Robert. "Clustering in the one-dimensional three-color cyclic cellular automaton." The Annals of Probability (1992): 1528-1548.
Li, Wentian. "Complex patterns generated by next nearest neighbors cellular automata." Computers & Graphics 13.4 (1989): 531-537.
Chate, H. & Manneville, P. (1990). Criticality in cellular automata. Physica D (45), 122-135.
Li, W., Packard, N., & Langton, C. (1990). Transition Phenomena in Cellular Automata Rule Space. Physica D (45), 77-94.
Colasanti, R. L., R. Hunt, and L. Watrud. “A simple cellular automaton model for high-level vegetation dynamics.” Ecological Modelling 203.3 (2007): 363-374.
S. Yassemi, S. Dragićevića, M. Schmidt(2008), Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour , Ecological Modelling, 210(1–2), 71–84
Araujo and Celani (20166), Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
Rickert, M., Nagel, K., Schreckenberg, M. and Latour, A., 1996. Two lane traffic simulations using cellular automata. Physica A: Statistical Mechanics and its Applications, 231(4), pp.534-550.
Karafyllidis, I. and Thanailakis, A., 1997. A model for predicting forest fire spreading using cellular automata. Ecological Modelling, 99(1), pp.87-97.
Ermentrout, G.B. and Edelstein-Keshet, L., 1993. Cellular automata approaches to biological modeling. Journal of theoretical Biology, 160(1), pp.97-133.
Alarcón, T., Byrne, H.M. and Maini, P.K., 2003. A cellular automaton model for tumour growth in inhomogeneous environment. Journal of theoretical biology, 225(2), pp.257-274.
Yuan, W. and Tan, K.H., 2007. An evacuation model using cellular automata. Physica A: Statistical Mechanics and its Applications, 384(2), pp.549-566.
Dormann, S. and Deutsch, A., 2002. Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In silico biology, 2(3), pp.393-406.
Bersini, H. and Detours, V., 1994, July. Asynchrony induces stability in cellular automata based models. In Artificial Life IV (pp. 382-387). MIT Press, MA.

Agent-based Modeling

Dou, Y., Millington, J.D.A., Bicudo Da Silva, R.F., McCord, P., Viña, A., Song, Q., Yu, Q., Wu, W., Batistella, M., Moran, E., & Liu, J. (2019). Land-use changes across distant places: Design of a telecoupled agent-based model. Journal of Land Use Science, 14(3), 191–209.
Dou, Y., Yao, G., Herzberger, A., Da Silva, R.F.B., song, Q., Hovis, C., Batistella, M., Moran, E., Wu, W., & Liu, J. (2020). Landuse changes in distant places: Implementation of a telecoupled agent-based model. Journal of Artificial Societies and Social Simulation, 23(1), 11.
Any paper from Journal of Artificial Societies and Social Simulation
Pe'er et al. Virtual Corridors for Conservation Management, Conservation Biology (2005): 1997–2003
Malaquias et al. Larval Dispersal of Spodoptera frugiperda Strains on Bt Cotton: A Model for Understanding Resistance Evolution and Consequences for its Management. Scientific reports. 2017 Nov 23;7(1):16109.
Brown, C.; Bakam, I.; Smith. P.; Matthews, R.B., (2016) An agent-based modelling approach to evaluate factors influencing bioenergy crop adoption in north-east Scotland., Global Change Biology Bioenergy, 8, 226-244.
cst-317/classes2023.txt · Last modified: 2023/09/01 08:54 by pedro