User Tools

Site Tools


CST-317: Introduction to Earth System Modelling (INPE Course 2013)

Professors: Gilberto Câmara, Pedro R. Andrade


  • Modeling the Environment (2nd edition), Andrew Ford. Island Press, 2010.
  • Thinking in Systems, Donella Meadows, Chelsea Green Publishing, 2008.
  • Dynamic Modeling of Environmental Systems, Michael L. Deaton & James J. Winebrake. Springer, 2000.
  • Simulation for the Social Scientist, Nigel Gilbert & Klaus Troitzsch, Open University Press, 2005.
  • Complex Adaptive Systems: An Introduction to Computational Models of Social Life, John H. Miller & Scott Page, Princeton University Press, 2007.
  • Cities and Complexity. Michael Batty. MIT Press, 2007.

Software Description

The models described in this course will be developed using TerraME. TerraME is an extension of the Lua language. Some useful documents about TerraME:

Students should read the TerraME EMS paper first, to get a sense of the language. Then they should read the Lua papers, to learn about programming in Lua.


Additional Reading

Papers for Final Projects

The final project consists of an implementation and discussion of one of the following papers.

Christiane e Anahi H. Balzter, P. W. Braun, W. Köhler (1998) Cellular automata models for vegetation dynamics. Ecological Modelling 107(2-3):113-125
J. Silvertown, S. Holtier, J. Johnson and P. Dale (1992) Cellular Automaton Models of Interspecific Competition for Space-The Effect of Pattern on Process. Journal of Ecology, 80(3):527-533
Felipe Chase, C. (1992) Fluvial landsculpting and the fractal dimension of topography. Geomorphology, 5(1-2):39-57.
S. G. Berjak, J. W. Hearne (2002) An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Ecological Modelling 148(2):133–15
D. L. Dunkerley (1997) Banded vegetation: development under uniform rainfall from a simple cellular automaton model. Plant Ecology 129(2):103-111
D.L Dunkerley (1997) Banded vegetation: survival under drought and grazing pressure based on a simple cellular automaton model. Journal of Arid Environments 35(3):419–428
Jaidson e Rafael G.Ch Sirakoulis, I. Karafyllidis, A. Thanailakis (2000) A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling 133(3): 209–223
Ana Gabriela e Lucinéia C. Beauchemina, J. Samuelb, J. Tuszynskia (2005) A simple cellular automaton model for influenza A viral infections. Journal of Theoretical Biology 232(2) 223–234
Medeiros, L. C., Castilho, C. A. R., Braga, C., de Souza, W. V., Regis, L., Monteiro, A. M. V. (2011). Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLOS neglected tropical diseases, 5(1), e942.
Carla e Ian M.V. Avolio, S. Gregorio, F. Mantovani, A. Pasuto, R. Rongo, S. Silvano, W. Spataro (2000) Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios. International Journal of Applied Earth Observation and Geoinformation 2(1):41–50
Sandro e Lira H. Nakanishi (1990) Cellular-automaton model of earthquakes with deterministic dynamics. Phys. Rev. A 41:7086–7089
R. Toivonen, J. Onnela, J. Saramaki, J. Hyvonen, K. Kaski (2006) A model for social networks. Physica A: Statistical Mechanics and its Applications 371(2):851–860
Barros, J. Urban Growth in Latin American Cities. PhD thesis, CASA/UCL
Lis e Ana Paula Cycles in Predator and Prey Populations, Chapter 20 of A. Ford, Modeling the Environment
cst-317/aulas2013.txt · Last modified: 2014/06/25 09:28 by gilberto