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Abstract

A cellular automaton model for the effects of population movement and vaccination on epidemic propagation is
presented. Each cellular automaton cell represents a part of the total population that may be found in one of three
states: infected, immunized and susceptible. As parts of the population move randomly in the cellular automaton
lattice, the disease spreads. We study the effect of two population movement parameters on the epidemic propagation:
the distance of movement and the percentage of the population that moves. Furthermore, the model is extended to
include the effect of the vaccination of some parts of the population on epidemic propagation. The model establishes
the acceleration of the epidemic propagation because of the increment, of the percentage of the moving population,
or of the maximum distance of population movement. On the contrary, the effect of population vaccination reduces
the epidemic propagation. The proposed model can serve as a basis for the development of algorithms to simulate real
epidemics based on real data. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Throughout the 20th century, the formal analo-
gies between the mathematical models in popula-
tion dynamics and certain models of different
physical or chemical processes have been a source
of inspiration for biologists, physicists and engi-
neers. Epidemics constitute a very important topic

in biology, bioengineering, medicine, mathematics
and physics (Mollison, 1995).

Epidemics have been modeled using differential
equations (Edelstein-Keshet, 1988; Murray, 1993).
However this approach has some serious draw-
backs (Ahmed and Agiza, 1998) in that it neglects
the local character of the spreading process, it
does not include variable susceptibility of individ-
uals, and cannot handle the complicated
boundary and initial conditions. Cellular au-
tomata (CAs) can overcome the above drawbacks
and have been used by several researchers as an
alternative method of modeling epidemics (Jo-
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hansen, 1996; Vlad et al., 1996, Zaharia et al.,
1996; Kleczkowski et al., 1997; Rousseau et al.,
1997; Ahmed and Agiza, 1998; Ahmed et al.,
1998; Dos Santos, 1998; Rhodes and Anderson,
1998; Maniatty et al., 1999).

The aim of this work is to use the CA approach
in order to study the effect of population move-
ment on epidemic propagation. We have devel-
oped a two-dimensional CA model, each cells of
which represents a part of the total population,
which may be found in one of three states: in-
fected, immunized and susceptible. As parts of the
population move randomly in the CA lattice, the
disease spreads. We have studied the effect of the
two most important population movement
parameters on the epidemic propagation: the dis-
tance of movement and the percentage of the
population that moves. Finally, the model has
been extended to include the effect of the vaccina-
tion of some parts of the population on epidemic
propagation. The proposed model can serve as a
basis for the development of algorithms to simu-
late real epidemics based on real data.

The paper is organized as follows: in Section 2,
a summary of the differential equations used to
model epidemic propagation is given. All the nec-
essary background on CAs is given in Section 3.
The model is described in Section 4. Based on this
model, we develop an algorithm for the simula-
tion of epidemic spreading. The algorithm is de-
scribed in Section 5, and the corresponding
pseudocode is given. The implementation of the
algorithm in the homogeneous spreading of the
epidemic is described in Section 6. The effect of
the population movement and the effect of vacci-
nation of some parts of the population on epi-
demic propagation are described in Section 7 and
Section 8, respectively. Finally, the discussion of
the results obtained in the previous sections and
the conclusions drawn are presented in Section 9.

2. Differential equations for modeling epidemic
spreading

Differential equation models are used to de-
scribe epidemic models (Holmes, 1997; Ahmed
and Agiza, 1998), e.g. the Kermack and McK-

endrick (1927) SIR model, with the system of
ordinary differential equations:

S: = −aSI, I: =aSI−bI, R: =bI (1)

where S is the susceptible part, I the infected part,
and R the recovered part of the population.

Here, it is assumed that the population is well
mixed, an assumption which in reality is not valid.
Also, it is assumed that the total population is
constant, i.e. external effects, such as death,
movement, imported objects etc. are neglected.
The variable susceptibility of individuals is also
neglected. When incubation is included, the result-
ing equation determining the asymptotic value of
susceptibles is the complicated self-consistent
transcendental equation (Jones and Sleeman,
1983):

S(�)=S(0)

exp
�

−a
& s

0

I0(u)du−as [S(0)−S(�)]
�
(2)

where I0(t) is the number of initial infectives
remaining at time t. In Section 4, we will use the
cellular automata approach, which avoids these
complications.

3. Cellular automata

CAs (von Neumann, 1966) are models of phys-
ical systems, where space and time are discrete
and interactions are local. They have been exten-
sively used as models for complex systems (Wol-
fram, 1994). CAs have also been applied to
several physical problems, where local interactions
are involved (Gerhard and Schuster, 1989; Ger-
hard et al., 1990; Weimar et al., 1992; Karafyllidis
and Thanailakis, 1997, Karafyllidis, 1998). In
spite of the simplicity of their structure, CAs
exhibit complex dynamical behavior and can de-
scribe many physical systems and processes. A
CA consists of a regular uniform n-dimensional
lattice (or array), usually of infinite extent. At
each site of the lattice (cell), a physical quantity
takes on values. This physical quantity is the
global state of the CA, and the value of this
quantity at each site is its local state. Each cell is
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restricted to local neighborhood interaction only
and, as a result, it is incapable of immediate
global communication (von Neumann, 1966). The
neighborhood of a cell is taken to be the cell itself
and some (or all) of the immediately adjacent
cells. The states at each cell are updated simulta-
neously at discrete time steps, based on the states
in their neighborhood at the preceding time step.
The algorithm used to compute the next cell state
is referred to as the CA local rule. Usually, the
same local rule applies to all cells of the CA.

A CA is characterized by five properties:
1. the number of spatial dimensions (n);
2. the width of each side of the array (w). wj is

the width of the jth side of the array, where
j=1, 2, 3, . . . , n ;

3. the width of the neighborhood of the cell (d).
dj is the width of the neighborhood along the
jth side of the array;

4. the states of the CA cells;
5. the CA rule, which is an arbitrary function F.

The state of the a cell, at time step (t+1), is
computed according to F. F is a function of the
state of this cell at time step (t) and the states of
the cells in its neighborhood at time step (t). The

case of a two-dimensional CA (n=2), with neigh-
borhood width d1=3 and d2=3, is shown in Fig.
1. In this case the neighborhood of the (i, j ) cell
consists of the (i, j ) cell itself and of all eight cells
which are adjacent and diagonal to it.

CAs have sufficient expressive dynamics to rep-
resent phenomena of arbitrary complexity and, at
the same time, can be simulated exactly by digital
computers because of their intrinsic discreteness,
i.e. the topology of the simulated object is repro-
duced in the simulating device (Vichniac, 1984).
Mathematical tools for simulating physics,
namely PDEs, contain much more information
than is usually needed, because variables may take
an infinite number of values in a continuous
space. Moreover, the value of a physical quantity
cannot be measured at a point, but instead it is
measured over a finite volume (Toffoli, 1984a).
PDEs are used to compute values of physical
quantities at points, whereas CAs are used to
compute values of physical quantities over finite
volumes (CA cells). The CA approach is consis-
tent with the modern notion of unified space-time.
In computer science, space corresponds to mem-
ory and time to processing unit. In CAs, memory
(CA cell state) and processing unit (CA local rule)
are inseparably related to a CA cell (Matzke,
1994; Omtzigt, 1994). Therefore, for the above
reasons, CAs are an alternative to partial differen-
tial equations (Toffoli, 1984a; Omohundro, 1984)
and they can easily handle complicated boundary
and initial conditions, inhomogeneities and an-
isotropies, which are induced by epidemics. In
addition, algorithms based on CAs run quickly on
digital computers (Toffoli, 1984b). As models for
physical systems, CAs have many limitations.
They are classical systems and, therefore, they
cannot represent quantum mechanical systems.
CAs should not be used to simulate systems where
speeds are comparable to that of light because of
the anisotropy induced by the discrete space.
More about modeling physics with CAs may be
found in Minsky, 1982, Feynman, 1982, Zeigler,
1982 and Vichniac, 1984.

Models based on CAs lead to algorithms which
are fast when implemented on serial computers
because they exploit the inherent parallelism of
the CA structure. These algorithms are also ap-

Fig. 1. The neighborhood of the (i, j ) cell is formed by the
(i, j ) cell itself and the eight adjacent cells.



G.C. Sirakoulis et al. / Ecological Modelling 133 (2000) 209–223212

propriate for implementation on massively paral-
lel computers, such as the cellular automaton
machine (CAM) (Toffoli, 1984b; Wilding et al.,
1991).

4. Description of the model

The population over which the epidemic propa-
gation will be modeled is assumed to exist in a
two dimensional space. Furthermore, it is as-
sumed that the population distribution is homoge-
nous. The two dimensional space is divided into a
matrix of identical square cells, with side length a
and it is represented by a CA. Each CA cell
includes a number of individuals living there. The
number of spatial dimensions of the CA array is
n=2. The widths of the two sides of the CA array
are taken to be equal, i.e. w1=w2. The size of the
array (i.e. the values of w1,2) is defined by the user
of the model and it is a compromise between
accuracy and computation time. A large array size
results in a large number of CA cells with small
side length a, thus, increasing the model accuracy,
but it also results in large computations times.
The width of the neighborhood of a CA cell is
taken to be =3 in both array sides, i.e. d1=d2=
3. This CA cell neighborhood is shown in Fig. 1.

The state Ci, j
t of the (i, j ) CA cell at time t is:

Ci, j
i ={Pi, j

i , INFi, j
t , IMFi, j

t } (3)

where INFi, j
t is a flag called the ‘infectious flag’.

The value of this flag indicates whether some of
the individuals located in the (i, j ) cell are in-
fected by the disease at time t. If INFi, j

t =1, then
the (i, j ) cell belongs to the set of infected cells of
the population, because some of the individuals of
this cell are infected by the epidemic disease,
whereas if INFi, j

t =0, then none of the individuals
located in the (i, j ) cell is infected by the epi-
demic. If INFi, j

t =1, then Pi, j
t is the fraction of

the number of individuals in the (i, j ) cell infected
by the disease, at time t :

Pi, j
t =

Si, j
t

T i, j
t (4)

where Si, j
t is the infected part of the population

and Ti, j
t is the total population in the (i, j ) cell.

Pi, j
t may take any value between 0 and 1, but,

in order to keep the number of states of the CA
finite, Pi, j

t is made to take 11 discrete values:

If 0.0BPi, j
t B0.1, then Pi, j

t =0.1

If 0.15Pi, j
t B0.2, then Pi, j

t =0.2
. . . . . . . . . . . . . . . . . . . . .

If 0.95Pi, j
t 51.0, then Pi, j

t =1.0 (5)

Obviously, if INFi, j
t =0, then Pi, j

t =0.
The time duration of the disease is user-defined

and it can be assumed to be equal to tin. After
that time the population has recovered from the
disease and has acquired a temporal immunity to
this disease. After tin time steps, the flag INFi, j

t

will change its value from 1 to 0. At this time, the
flag IMFi, j

t will also change its value from 0 to 1.
IMFi, j

t is called the ‘immune flag’ and indicates
whether the population located in the (i, j ) cell is
immune to the disease or not. The immune popu-
lation loses its immunity after time tim, it becomes
susceptible to the disease again and the value of
the flag IMFi, j

t becomes equal to 0. The time
duration tim is also user-defined.

Recapitulating, the CA cells may be found in
one of the following three general states:

If INFi, j
t =0, and IMFi, j

t =0, then the popula-
tion in the (i, j ) cell is susceptible to the disease.

If INFi, j
t =1, IMFi, j

t =0, and 0BPi, j
t 51, then

the population in the (i, j ) cell is infected.
If INFi, j

t =0, and IMFi, j
t =1, then the popula-

tion in the (i, j ) cell is immune to the disease.
It is clear that the value of Pi, j

t is considered
only in the case where the population is infected.
In the other two cases, its value is 0. For example,
the state of a cell with 55% of its population
infected is Ci, j

t ={0.55, 1, 0}.
Each CA cell starts as susceptible and becomes

infected if some CA cell in its neighborhood is
infected. It remains infected for time tin and then
it becomes immune. It remains immune for time
tim and then it becomes susceptible again. The
transition from the infected state to the immune
state takes place after time tin. The transition from
the immune state to the susceptible state takes
place after time tim. The transition from the sus-
ceptible state to the infected state is done accord-
ing to:
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Fig. 2. The pseudocode of the algorithm.

Pi, j
t+1=Pi, j+k

t (Pi−1, j
t , Pi, j−1

t , Pi, j+1
t , Pi+1, j

t )

+ l(Pi−1, j−1
t , Pt−1, j+1

t , Pi+1, j−1
t ,

Pi+1, j+1
t ) (6)

The state Pi, j
t+1, of the (i, j ) cell at the next time

step t+1, is affected by the states of all eight cells
in its neighborhood at the present time step t, and
by its own state at the present time step t. The CA
local rule comprises the transitions between the
states, as described above and Eq. (6). In Eq. (6),
the adjacent nearest neighbors of the (i, j ) cell, i.e.
the neighbors that have a common side with the
(i, j ) cell and the diagonal adjacent neighbors are
grouped, respectively, together. The effect of the
adjacent nearest neighbors is multiplied by k,
whereas the effect of the diagonal adjacent neigh-
bors is multiplied by l. It is expected that the (i, j )
cell will be infected more quickly, if it has an
infected adjacent nearest neighbor than if it has

an infected diagonal adjacent neighbor, because
of the more extensive contact between popula-
tions. Therefore, it is always k\ l.

5. The algorithm

An algorithm for the simulation of the epidemic
spreading, based on the model described in Sec-
tion 4, has been developed in the present research
work. Fig. 2 shows the pseudocode of this al-
gorithm. In the beginning, the algorithm reads the
initial state of the CA cell. The number of cells is
defined by the user and it is a compromise be-
tween accuracy and computation time. In the next
time step, the flags of the CA cells are considered
to determine which cells include individuals in-
fected or immune. After that, the algorithm calcu-
lates the percentage of the infected individuals in
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all CA cells, using Eq. (6). Subsequently, the
termination condition is applied. This condition is
usually a number of time steps Te defined by the
user. If the number of time steps taken is less than
Te, the algorithm continues by taking another
time step. If the number of time steps taken is
equal to or greater than Te, the algorithm
terminates.

6. Homogeneous process of epidemic propagation

The spreading of the epidemic is homogeneous
if the initial properties of the population of CA
cells are the same for all cells. Consider that the
epidemic process starts at a point in the center of
the two dimensional space, where the population
exists. In this case, the epidemic fronts should be
circular and this was the first test to the proposed
model. Successive epidemic fronts, almost perfect
circles, have been obtained as shown in Fig. 3.
The algorithm, in this particular case, was applied
to a matrix of 100×100 cells and it was found
that, for the model to produce circular epidemic
fronts, the values of the parameters k and l of the
local CA rule should be 0.44 and 0.04, respec-

tively. In Fig. 3, the central CA cell is assumed to
be infected and that it spreads the disease to its
neighborhood, the epidemic process finishing after
Te=40 time steps. The infection and immune
times are chosen to be tin=5 and tim=10. As
shown in Fig. 3, the population of the CA cells is
divided into four regions. In region (1) the CA
cells include susceptible individuals. The individu-
als in this region have previously been infected,
immunized, and become susceptible again. The
CA cells, which are found in region (2), include
individuals who have been infected in the past and
are now immune. In region (3), the CA cells
include individuals who are currently infected.
Finally, in region (4) the CA cells include individ-
uals who have not yet been in contact with the
epidemic disease and, thus, they are not infected.

Fig. 4a shows the case where the central CA cell
of the population, after it had completed the
epidemic process (infected–immunized–suscepti-
ble), is infected again by the same disease and the
cycle of the epidemic is resumed. This results in
concentric circles expressing the resumption of the
epidemic from the center of the population. The
parameters of the algorithm remain the same as in
the case of Fig. 3, the main difference focusing on

Fig. 3. Circular epidemic fronts. The epidemic starts at the center of the circular fronts. The population of CA cells is divided into
four regions (1, susceptible; 2, immune; 3, infected; 4, susceptible). (The distance units in both axes are arbitrary).
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Fig. 4. Circular epidemic fronts in the case where the central
CA cell of the population, after it had completed the epidemic
process, is infected again by the same disease, and the cycle of
the epidemic is resumed. (b) Circular epidemic fronts, almost
perfect circles, in the case where two CA cells, after they had
completed the epidemic process, are infected again, and the
cycle of the epidemic is resumed. (The distance units in both
axes are arbitrary).

steps. As in Fig. 4a, the individuals of the two
cells, after completing the epidemic process, are
getting infected again and a new epidemic cycle
begins.

7. The effect of population movement

One of the most important factors for the prop-
agation of an epidemic disease in a population is
the movement of individuals. This results in an
increment of the individuals getting infected and
in the enlargement of the overall percentage of the
infected population. The effect of the population
movement is included in the algorithm developed
in this work. The distance of movement and the
number of individuals who are going to move are
the two most important parameters which are
taken into consideration. Fig. 5a shows the epi-
demic front resulting from the movement of indi-
viduals. It should be mentioned that in Fig. 5, the
infection and immune times were chosen to be
tin=15 and tim=30, respectively, whereas the
movement of individuals was taking place after
tm=30 time steps from the beginning of the epi-
demic process. In Fig. 5a, the epidemic front for
Te=40 time steps is shown and, as in Fig. 3, the
central CA cell was assumed to be infectious and
that it spread the epidemic to its neighborhood
only once. The percentage of the population that
was going to move was taken to be =10%, while
the maximum distance of movement was taken to
be: max–distance equals five array cells. The cells
involved in the population movement were chosen
with the help of a pseudorandom number genera-
tor (Knuth, 1981), which provides the new loca-
tions, in every possible direction, with a maximum
distance of five array cells. The distance of the
movement could be randomly different for each
of the chosen cells and it also results from a
pseudorandom number generator (Knuth, 1981),
with the single limitation that this distance cannot
be greater than the maximum distance. To obtain
a greater variability, the possible direction of pop-
ulation movement is decided randomly, i.e. the
individuals of the chosen CA cell (i, j ), could
move to the CA cell (i9x, j9x), where 05x5
5. In Fig. 5b, the epidemic front is just as before,

the resumption of the epidemic in the center of
the matrix, which creates epidemic circles with
period T= tin+ tim. It should be mentioned that
the region of the CA cells that includes immune
individuals is not represented in Fig. 3 for reasons
of simplicity. The case of two CA cells being
centers of epidemic spreading is shown in Fig. 4b.
There is one cell on the upper left corner and one
on the lower right corner of the matrix creating
epidemic circles with period T= tin+ tim and the
two epidemic fronts intersect after a few time
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but this time the percentage of the population,
which is about to move has increased to 20%. The
rest of the parameters, Te, tm, tim, tin and max–
distance, were exactly the same as in Fig. 5a.
Similarly, Fig. 5c,d show the epidemic fronts for
population movements of 30 and 40%, respec-
tively, the other parameters of the algorithm again
remaining the same.

If the maximum distance is increased, the prop-
agation of the epidemic will be faster. In Fig. 6a,
the percentage of the population that moves was
taken to be =10%, while the maximum distance
of movement was taken to be equal to: max–dis-
tance equals ten array cells. Also, the infection
and the immune times were chosen to be tin=15

and tim=30, respectively, whereas the movement
of the individuals starts after tm=30 time steps
from the beginning of the epidemic process. Fi-
nally, the epidemic front was depicted for Te=40
time steps. The only difference between Fig. 5a
and Fig. 6a is located on the value of max–dis-
tance, which was doubled in the latter case. In
Fig. 6b–d, the parameters of the algorithm re-
main the same, except for the percentages of the
population that move. These are increasing by
10%. Thus, in Fig. 6b, the percentage of the
population that moves has increased to 20%, in
Fig. 6c that percentage is =30% and, finally, in
Fig. 6d, the percentage is 40%. The differences
between Fig. 5 and Fig. 6 are obvious. When the

Fig. 5. Circular epidemic fronts in the case of random population movement, with a maximum distance equal to five array cells and
a percentage of moving population: (a) 10%, (b) 20%, (c) 30% and (d) 40% of the total population. (The distance units in both axes
are arbitrary).
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Fig. 6. Circular epidemic fronts in the case of random population movement, with a maximum distance equal to ten array cells and
a percentage of moving population: (a) 10%, (b) 20%, (c) 30% and (d) 40% of the total population. The fronts of Fig. 5(a) and Fig.
6(a), Fig. 5(b) and Fig. 6(b), Fig. 5(c) and Fig. 6(c), and Fig. 5(d) and Fig. 6(d) correspond to the same set of parameters. The only
difference is the maximum distance of population movement. (The distance units in both axes are arbitrary).

percentage of the moving population is increased,
the epidemic fronts lose their symmetry, and the
spreading of the epidemic disease is accelerated.

Finally, the case of increasing even more the
value of max–distance is considered and the re-
sults obtained are presented in the Fig. 7a–d. The
value of max–distance is now 15 and for Fig. 7a,
the percentage of the moving population is 10%,
while the rest of the parameters remain equal to
those corresponding to Fig. 5 and Fig. 6. Simi-
larly, Fig. 7b–d depict the epidemic fronts, which
have resulted from the population movement in
percentages of 20, 30 and 40%, respectively. It
should be noticed that as the max–distance and

the percentage of moving population are in-
creased, the epidemic fronts lose their circular
shape and the epidemic spreading is accelerated.

The influence of the differences in the percent-
ages of moving populations on the epidemic
spreading is better expressed in Fig. 8a. In Fig. 8,
there are four lines indicating the normalized area
covered by the epidemic disease after the move-
ment of population at time step 30. The line,
numbered 1, represents the normalized area cov-
ered by the epidemic disease in the case where the
moving population is 10% of the whole popula-
tion and the maximum distance of this movement
is equal to five array cells, as it was shown in
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Fig. 5a. The line, numbered 2, corresponds to Fig.
5b, where the percentage of the moving popula-
tion was 20% and the maximum distance of this
movement was again equal to five array cells.
Lines, numbered 3 and 4, resulted from Fig. 5c,d
respectively, represent the normalized area cov-
ered by the epidemic disease in the cases of 30 and
40% of moving population, with the maximum
distance being equal to five array cells. In Fig. 8b,
there are also four lines representing the normal-
ized area covered by the epidemic, but this time,
the maximum distance is equal to ten array cells.
Again, line 1 corresponds to Fig. 6a, line 2 to Fig.
6b, line 3 to Fig. 6c, and line 4 to Fig. 6d.

Comparing with Fig. 8a, it can be easily seen that
increasing the maximum distance of population
movement leads to an increment in the normal-
ized area covered by the epidemic disease. Fur-
thermore, the results with different percentages of
moving population are better seen in Fig. 8b, as
lines 3 and 4 deviate from lines 1 and 2 to a larger
extent than in the case of Fig. 8a. Finally, in Fig.
8c (curves 1–4) is shown the normalized area
covered by the epidemic in the cases correspond-
ing to Fig. 7a–d, respectively. As mentioned be-
fore, in the cases of Fig. 7, the maximum distance
of possible population movement was changed to
15 array cells, while none of the other parameters

Fig. 7. Circular epidemic fronts in the case of random population movement, with a maximum distance equal to 15 array cells and
a percentage of moving population: (a) 10%, (b) 20%, (c) 30% and (d) 40% of the total population. The fronts of Fig. 5(a) and Fig.
7(a), Fig. 5(b) and Fig. 7(b), Fig. 5(c) and Fig. 7(c), and Fig. 5(d) and Fig. 7(d) correspond to the same set of parameters. The only
difference is the maximum distance of population movement. (The distance units in both axes are arbitrary).
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Fig. 8. The normalized area covered by the epidemic disease as a function of time, in the case of random population movement with
maximum distance equal to five array cells and a percentage of moving population: 10% (curve 1), 20% (curve 2), 30% (curve 3) and
40% (curve 4) of the total population. (b) The normalized area covered by the epidemic disease as a function of time in the case of
random population movement with maximum distance equal to ten array cells and a percentage of moving population: 10% (curve
1), 20% (curve 2), 30% (curve 3) and 40% (curve 4) of the total population. (c) The normalized area covered by the epidemic as a
function of time in the case of random population movement with maximum distance equal to 15 array cells and a percentage of
moving population: 10% (curve 1), 20% (curve 2), 30% (curve 3) and 40% (curve 4) of the total population.

of the algorithm, applied to the cases of Fig. 5
and Fig. 6, had been changed for the set of Fig. 7.
As before in Fig. 8a,b, in Fig. 8c there are four
lines (numbered 1–4) expressing the normalized
area covered by the epidemic in the cases of
different percentages of moving population, equal
to 10, 20, 30 and 40%, respectively. In comparison
with Fig. 8a,b, Fig. 8c shows more clearly the
divergence of the four lines numbered 1–4.

8. The effect of vaccination of the population

The purpose of prophylactic vaccination is to
reduce morbidity and mortality in a population.
The effect of population vaccination reduces the
epidemic spreading, which is falling progressively.
To simulate the effect of vaccination, using the
algorithm of this work, we assume that a small
part of the initial population is vaccinated, as it is
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shown in Fig. 9a. To extend the variability of the
effect of vaccination, the location and size of the
vaccinated population was chosen randomly. In
Fig. 9b, the epidemic front has just reached the
part of vaccinated population and is going to
spread beyond it at subsequent time steps. The
infection and the immune times were chosen to be
tin=15 and tim=30, respectively, just as before.
In Fig. 9c, it is shown that the vaccinated popula-
tion is not infected by the epidemic, although the
epidemic has infected all other cells in the neigh-
borhood of the vaccinated population. Moreover,
as shown in Fig. 9d, the vaccinated population
helps in the reduction of the epidemic spreading

near the neighborhood of vaccination, distorting
the roundness of the circular epidemic front and
causing a small irregularity in the development of
the epidemic. The effect of population vaccination
on the epidemic spreading depends, normally, on
the percentage of the vaccinated population. In
the case of a small percentage of the population
being vaccinated, considered in this paper, the
vaccination does not change dramatically the
spreading of the epidemic, as shown in Fig. 9e,
where the epidemic front has almost regained its
normal shape. However, it does give a good pic-
ture of how the vaccination effect is simulated by
the algorithm developed in this work.

Fig. 9. A small part of the initial population is assumed to be vaccinated. (b) The epidemic front has just reached the part of
vaccinated population, and it is going to spread beyond it at subsequent time steps. (c) The epidemic has infected all the cells in the
neighborhood of the vaccinated population but not the vaccinated population. (d) The vaccinated population helps into the
reduction of epidemic spreading near the neighborhood of vaccination, distorting the roundness of the circular epidemic front and
causing a small irregularity in the development of the epidemic. (e) The epidemic front has almost regained its normal shape.
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Fig. 9. (Continued)

9. Discussion and conclusions

In the case of homogeneous epidemic spread-

ing, where the initial properties of the population
of cells of the aforementioned CA algorithm, are
the same for all cells, our algorithm managed to
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produce successive circular epidemic fronts, as it
was expected by theory. The simplicity of imple-
mentation of the above CA model results from
the lack of complicated timeless computations
derived from complex mathematical formulas, in
order to produce circular fronts (Delorme et al.,
1999). Furthermore, this CA algorithm has suc-
ceeded in handling both the resumption of the
epidemic in the center of the matrix, which creates
epidemic circles and the resumption of the epi-
demic in the two corners of the matrix. The effect
of the population movement when implemented
in the algorithm results in an increment of the
individuals getting infected and in the enlarge-
ment of the overall percentage of the infected
population. The distance of movement and the
number of individuals who are going to move are
the two most important parameters, which are
taken into consideration by our algorithm. The
increment of the aforementioned parameters re-
sulted in our algorithm in the same way, as it is
theoretical assigned, i.e. when the percentage of
the moving population is increased, or the maxi-
mum distance of population movement is in-
creased, the epidemic fronts lose their symmetry
(i.e. their circular shape) and the spreading of the
epidemic disease is accelerated. It is more than
obvious that if both the parameters are increased
simultaneously the epidemic process accelerates in
the maximum degree. On the contrary, the effect
of population vaccination reduces the epidemic
spreading, which is falling progressively, because
it reduces morbidity and mortality in a popula-
tion. The vaccinated population helps in the re-
duction of the epidemic spreading near the
neighborhood of vaccination, distorting the
roundness of the circular epidemic front and caus-
ing a small irregularity in the development of the
epidemic. The effect of population vaccination on
the epidemic spreading depends, normally, on the
percentage of the vaccinated population. In the
case of a great percentage of the population being
vaccinated, the vaccination does changes dramati-
cally the spreading of the epidemic.

In conclusion, a cellular automaton (CA) model
for epidemic propagation, including the effects of
population movement and population vaccina-
tion, has been presented. An algorithm based on

this model has been developed and used to deter-
mine the effect of movement of individuals, in a
hypothetical homogeneous population, on the epi-
demic propagation. The model and algorithm
were extended to include the vaccination effect. It
has been shown in this work that cellular au-
tomata are suitable for modeling successfully such
a complicated non-linear problem, whereas is
practically impossible to use differential equations
because of the complexity of the problem. Fur-
thermore, because of the inherent parallelism of
CAs, algorithms based on the proposed model
can potentially run on a parallel computer. The
proposed model can serve as a basis for the
development of algorithms to simulate real epi-
demics based on real data.
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