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Abstract. A stochastic cellular automata model for wildland fire spread under flat terrain
and no-wind conditions is proposed and its dynamics is characterized and analyzed. One of
three possible states characterizes each cell: vegetation cell, burning cell and burnt cell. The
dynamics of fire spread is modeled as a stochastic event with an effective fire spread probability
S which is a function of three probabilities that characterize: the proportion of vegetation cells
across the lattice, the probability of a burning cell becomes burnt, and the probability of the fire
spread from a burning cell to a neighboring vegetation cell. A set of simulation experiments is
performed to analyze the effects of different values of the three probabilities in the fire pattern.
Monte-Carlo simulations indicate that there is a critical line in the model parameter space
that separates the set of parameters which a fire can propagate from those for which it cannot
propagate. Finally, the relevance of the model is discussed under the light of computational
experiments that illustrate the capability of the model catches both the dynamical and static
qualitative properties of fire propagation.

1. Introduction
The wildland fire spread is a combustion reaction where the necessary ingredients for its
occurrence are: the vegetation, which provides the combustible source for the reaction; the
oxygen in the air, which actuates as an oxidizing agent; and a heat source responsible by the
initiation and the self-sustainability of the reaction [5]. The fire spreads across the landscape
consuming the vegetation and this process can be decomposed into four combustion phases,
the so called: pre-heating, ignition, combustion and extinction [5]. The fire front is the region
of intense flaming combustion where a large quantity of heat is released. Part of this heat is
transmitted to the vegetation not yet burning, and heating it up to the ignition temperature.
When this happens, the flames rise and the fire front occupies a new position ahead. The flames
remain as the vegetation is burnt out.

In this work a simple model for wildland fire dynamics under flat terrain and no-wind
conditions is proposed and its dynamics is analyzed. The model formulation is based on
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stochastic cellular automata and its dynamics is analyzed qualitatively and quantitatively.
Cellular automata are models that assume space, state and time discrete [1, 6]. A square
lattice represents the space and each element that constitutes the lattice is called cell. Each
cell has a neighborhood, set of internal states variables, and a local rule that describes the
transition between the states variables and define the future state as a function of the cell
present state and the neighborhood present states. In stochastic cellular automata the rules for
cell states transition are performed by means of probabilities. Stochasticity is used to represent
the vegetation heterogeneity and to include random component in the dynamics of the vegetation
combustion and ignition process during the fire spread.

The paper is structured as follow. In the Section 2 the modeling approach and the model
parameters are described. In the section 3 the model dynamics is characterized and analyzed.
Finally, in the last section, the model relevance is discussed.

2. Model description
The model is based on the spatially explicit representation and the landscape is depicted as a
square and two-dimensional lattice L of dimensions Lx × Ly. Each cell is defined by:

• its discrete position (i, j) ∈ Z2 in the lattice, where i = 1, . . . , Lx is the column and
j = 1, . . . , Ly is the row;

• the finite set of internal states variables that describes the possible behavior of the cells
in a given time step t which are St

(i,j) ∈ {E, V, F,O} where: E is an empty cell, which

denotes unburnable cells or without vegetation; V is a vegetation cell, with denote cells
with potential to burn; F is burning cell, which denotes a cell whose the vegetation in its
inside is burning; and O is a burnt cell, which denote vegetation cell that was burned by
the fire;

• the finite set of neighborhood cells N(i, j), where the Moore neighborhood, as illustrated
in the Figure 1(a), illustrate the neighborhood relations in the model and comprises
the eight cells surrounding (i∗, j∗) of a central cell (i, j) according with the definition
N(i, j) = {(i∗, j∗) : |i− i∗| ≤ 1, |j − j∗| ≤ 1};

• the local rule that determines the future cell state as a function of the present cell state
and present neighborhood cell states f : St

(i,j) × St
N(i,j) 7→ St+1

(i,j), where the time t is also

represented by discrete values or time steps. Thus, the time evolution of the model is driven
by the interaction between the cell states and the cell neighborhood states. Starting from a
given configuration of cells initial states, the cellular automaton self-replicates the sequent
cell states. The cellular automata model is stochastic because the state transition function
is performed according to probabilities values.

The heat transfer from burning regions to non-burning regions governs the fire spread. Thus,
the fire spread is modeled as a set of ignitions of vegetation cells as the burning cells persist.
Stochasticity is used to include the heterogeneity of spatial conditions present in real vegetation
patterns and to include a random component to the combustion dynamics and ignition process
[3, 4, 2]. The dynamics of fire spread is modeled as a stochastic event with an effective fire
spread probability S which is as a function three probabilities, which are:

• the probability D, that represents the heterogeneity of fuel conditions along the lattice and
determines the proportion of cells with vegetation across the lattice. Thus, for each cell in
t = 0, there is a probability D for its state to be vegetation cell and the probability 1−D
to it is empty cell;

• the probability B, that models the combustion process, where, in each time step, a burning
cell has a probability B to change its state to burnt cell;
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• the probability I, that models the ignition process, where, there is a probability I for the
fire spreads from a burning cell to a neighboring vegetation cell.

The local rule for perform the transition between the states are assessed according to these
probabilities values. The cell state transition diagram is showed in the Figure 1(b). An empty
cell is unchangeable and always remains in this state. The fire spread is considered a diffusion
contagious process and the fire can spreads only from a burning cell to a neighbor vegetation
cell. Thus, the transition V ⇒ F is conditioned for a vegetation cell that has at least one
burning cell in this neighborhood. Given two neighbors cells, one burning cell and the other a
vegetation cell, in each time step, there is a probability I for the burning cell ignites the neighbor
vegetation cell. Once ignited, in each time step, there is a probability 1 − B for a burning cell
remain burning, otherwise its state changes to burnt cell, which is the transition F → O.

The model input parameters are the probabilities D, B and I, the lattice size, and the
maximum time step NSTEPS. A complete visit to all cells of the lattice is called a sweep. A
simple simulation is performed in the two stages: initialization and fire spreading algorithm. A
complete visit to all cells of the lattice is called a sweep. The initialization stage includes: (1)
define the model input parameters; (2) execute a sweep and for each cell and change its state
to vegetation cell with probability D or empty cell with probability 1−D; and (3) select one or
more vegetation cells and change its state to burning cell. In the fire spreading algorithm, for
each time step t = 1, . . . , NSTEPS execute a sweep and: (1) for each burning cell, evaluate the
transition B → O; (2) for each neighbor of a burning cell evaluate the transition V ⇒ F . Time
simulation stop if t = NSTEPS or if there are none burning cell in a given time step.

(a) (b)

Figure 1. (a) The Moore neighborhood comprises eight cells (yellow cells) which surround
the central cell (black cells). (b) In the cell state transition diagram, arrows indicate the state
transitions paths. The double arrow indicates that the transition depends on the neighbor cell
state. The round dashed arrows indicate that the state transitions are conditioned by the values
of other probabilities.

3. Simulations and results
3.1. Qualitative analysis of the fire patterns
The effective fire spread probability S describes the fire behavior across the lattice as a function
of the probabilities D, B and I. Different fire patterns, with different size and shape, can be
obtained varying the values of these probabilities. The Figure 2 characterizes some fire patterns
using different values of D, B and I, for a lattice of size 201× 201 and the fire starting from a
cell at the middle of the lattice S0

(100,100) = F . Each cell state along the lattice is represented by

colors that which are, empty cell (black), vegetation cell (green), burning cell (red) and burnt
cell (gray).

The proportion of vegetation cells across the lattice determines the spatial distribution of
available fuel along the lattice. Higher values of D implies in more quantity of available fuel
along the landscape and therefore the fire propagates with more facility. This effect can be
observed comparing the Figures 2(d) and 2(f), which can be observed that in the Figure 2(f)
the burned area is larger than in the Figure 2(d).
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(a) D = 0.6, B = 0.1, D = 0.3 (b) D = 0.6, B = 0.1, D = 0.4

(c) D = 0.6, B = 0.1, D = 0.5 (d) D = 0.6, B = 0.5, D = 0.5

(e) D = 0.8, B = 0.1, D = 0.5 (f) D = 0.8, B = 0.5, D = 0.5

Figure 2. Different fire patterns for t = 100 using a lattice with size 201 × 201 and the fire
starting from the middle cell positioned at (i, j) = (100, 100). The parameters values are showed
immediately bellow the figures.

The probability B asserts the combustion latency for a burning cell (B−1 is a conception for
the mean reaction time). A burning cell with a high value of B burns most quickly (i.e., in less
time steps) than those that have a low value. This behavior can be observed comparing the
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Figures 2(e) and 2(f). Furthermore, how smaller is the values of B, more high is the possibility
of the fire spread from the burning cell to neighbors vegetation cells, because the cells remain
burning in more time steps. This effect can be observed comparing the Figure 2(c) and 2(d).

The ignition probability I determines how lightly the fire spreads along the lattice. The
effects of different fire rates of spread can be observed by the different burned areas comparing
the Figures 2(a), 2(b) and 2(c). Higher values of I are related with fire fronts which spread most
quickly.

3.2. Monte-Carlo simulations
Because the model stochasticity, a same set of parameters values can generate fire patterns that
are slightly different, according showed in the Figure 3(a), 3(b) and 3(c). Thus, is necessary
to obtain the mean behavior computed during N simulations based on different sequence of
generated random numbers. This is the objective of the Monte-Carlo simulations (MCS). For
a given set of model input parameters, a large quantity of simulations are carried out and for
each cell is computed the number of times that it burns. The number of time that a cell burn
divided by the total number of MCS is the estimative of the cell burning risk. The Figure 3(d)
shows the cell burning risk computed by a MCS for D = 0.6, B = 0.5, I = 0.5 and N = 100.

3.3. Evaluating the value of S
The fire spreads along the lattice following a pathway of interconnected cells which varies as a
function of the effective probability S. Studies in percolation theory [7] corroborate that there
is a critical value S∗, called percolation threshold, so that when S > S∗ always there is the
pathway for the fire spreads from any starting cell to some other point inside the lattice. The
main question here is how to characterize the probability S for the model. The existence of
the percolation threshold and the consequent description of the critical line as a function of the
probabilities D, B and I are investigated using MCS.

A set of N MCS are performed using identical lattices and different values of D, B and I.
The fire starts at the left border of the lattices and during the N simulations is computed the
number of times that the fire reaches the right border of the lattice. If the fire propagates from
one side to the other then the fire percolate the lattice. Thus, the approximation of S, denoted
by 〈S〉, is calculated as:

〈S〉 =
1

N

N∑
j=1

Cj ,

where Cj = 1 if the fire percolate the lattice and Cj = 0 otherwise.
The Figure 4 characterizes the values of 〈S〉 for different values of D varying the values of B

and I. For each set of parameters values a number of N = 1000 MCS are carried out using one
lattice of size 52 × 52. The color map displays values varying from 〈S〉 = 0 (black) to 〈S〉 = 1
(white). If 〈S〉 = 0 the fire not percolates the lattice, in other words, the fore extinction regime
predominates. Otherwise, if 〈S〉 = 1, the fire propagation regime predominates and the fire
spreads incessantly across the lattice. The Figs. 4(a)–4(f) indicate the existence of a critical
line defining a division on the model parameter space that separates the set of parameters for
which a fire can propagate from those for which it cannot.

3.4. The fire rate of spread
The fire rate of spread R is a common measure of the fire behavior. To compute its value and
its relation with the model parameters, a MCS is used to compute the mean fire front edge
position, computed in the central cells in the direction of spread, for fires initiated at the left
edge of the lattice. The time evolution of the fire front edge position is compatible with a linear
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(a) (b)

(c) (d)

Figure 3. (a)–(c) Fire patterns slightly different for a lattice with size 201× 201, D = 0.6, B =
0.5, I = 0.5, t = 100 and the fire starting from the middle cell positioned at (i, j) = (100, 100).
(d) Burning risk for N = 10000 Monte-Carlo simulation. The color map in the figure varies
from 0 (black) to 1 (white), and the cells that not burn (green cells).

fit, and thus a rate of spread can be defined as the angular coefficient of the linear fit. The rate
of spread unit is calculated in cell dimensions per time steps, assuming that the cells have the
same dimensions.

The fire pattern generated by the model is resultant of two coupled processes: fire diffusion
and fire persistence. The fire diffusion process is the dynamics of fire transmission between the
cells, and it is governed by the ignition probability I. The fire persistence process supports the
fire remaining in a burning cell and is responsible by the dynamics of fire pattern formation
during the time and drives the fire diffusion process.

The combination of these two processes can generate a large quantity of different fire patterns
and the values of I and B are the weights of each one. A high fire persistence and one low
fire diffusion provides fire fronts that propagate slowly during the time. Keeping constant the
persistence and increasing the diffusion, the fire rate of spread increases. This effect can be
observed comparing the dependence of rate of spread on I in the Figs. 5(a) – 5(d).

The probability D is also important to the fire pattern formation. De facto, the diffusive fire
spread require a continuous pathway or clusters of vegetation cells and the spatial distribution of
vegetation cells across the lattice depends on D. Lower values of D generate a fuel distribution
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(a) D = 0.2 (b) D = 0.4

(c) D = 0.5 (d) D = 0.6

(e) D = 0.8 (f) D = 1.0

Figure 4. Values of 〈S〉 for different values of D varying the values of B (x-axis) and I (y-axis).
A total of N=1000 Monte-Carlo simulations are carried out for each set of values D, B and I
using a lattice of size 52× 52.

that is sparse enough to the fire not propagate across it, and that can be observed in the Fig. 4(a).
As D is increased, the vegetation cells cluster take place and there is fuel enough to support the
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fire spread. Thus, there is a critical value D∗, such that for D >= D∗ there is the consequent
formation of a percolation cluster of neighbor vegetation cells. This percolation cluster not
indicate that the fire can propagate uninterruptedly because the fire spread probability is also
conditioned to the values of B and I according the critical line characterized in the Figure 4. In
the Figs. 4(a)–4(f) can be observed that when D increases, also increases the proportion of the
set of model parameters for which the fire can propagate.

(a) D = 0.9, B = 0.05 (b) D = 0.9, B = 0.9

(c) D = 1.0, B = 0.05 (d) D = 1.0, B = 0.9

Figure 5. Dependence of the rate of spread on I for different values of D and B.

4. Final considerations
Although the model formulation include only fire spread dynamics under flat terrain and no-
wind conditions, the qualitative and quantitative analysis performed in this paper indicate
that this model constitutes a qualitative framework for wildland fire spread dynamics
simulation. However, for further ecological applications of this model, the relation of the
model parameters with meteorological, vegetation and topographical factors remain to be
quantitatively established.
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The effects of wind and slope on ignition process can be represented according to the
incorporation of a directional bias that proportions an anisotropic diffusive process across the
lattice [3]. Different values of vegetation density D can be used to represent several phyto-
physiognomy vegetation clusters. The probability B can be adjusted to include different values
of fuel load over the surface and different fuel moisture conditions. This model parameterization
consists in finding an explicit expression between the model parameters and the environmental
conditions of historical and documented forest fires.
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