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Abstract

Background: Dengue is a disease of great complexity, due to interactions between humans, mosquitoes and various virus
serotypes as well as efficient vector survival strategies. Thus, understanding the factors influencing the persistence of the
disease has been a challenge for scientists and policy makers. The aim of this study is to investigate the influence of various
factors related to humans and vectors in the maintenance of viral transmission during extended periods.

Methodology/Principal Findings: We developed a stochastic cellular automata model to simulate the spread of dengue
fever in a dense community. Each cell can correspond to a built area, and human and mosquito populations are individually
monitored during the simulations. Human mobility and renewal, as well as vector infestation, are taken into consideration.
To investigate the factors influencing the maintenance of viral circulation, two sets of simulations were performed: (1st)
varying human renewal rates and human population sizes and (2nd) varying the house index (fraction of infested buildings)
and vector per human ratio. We found that viral transmission is inhibited with the combination of small human populations
with low renewal rates. It is also shown that maintenance of viral circulation for extended periods is possible at low values of
house index. Based on the results of the model and on a study conducted in the city of Recife, Brazil, which associates vector
infestation with Aedes aegytpi egg counts, we question the current methodology used in calculating the house index, based
on larval survey.

Conclusions/Significance: This study contributed to a better understanding of the dynamics of dengue subsistence. Using
basic concepts of metapopulations, we concluded that low infestation rates in a few neighborhoods ensure the persistence
of dengue in large cities and suggested that better strategies should be implemented to obtain measures of house index
values, in order to improve the dengue monitoring and control system.

Citation: Medeiros LCdC, Castilho CAR, Braga C, de Souza WV, Regis L, et al. (2011) Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease
Persistence. PLoS Negl Trop Dis 5(1): e942. doi:10.1371/journal.pntd.0000942

Editor: Alison P. Galvani, Yale University, United States of America

Received August 30, 2010; Accepted December 9, 2010; Published January 11, 2011

Copyright: � 2011 Medeiros et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the Coordenação de Aperfeiçoamento de Nı́vel Superior - CAPES (http://www.capes.gov.br/). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: liliam.castro@inpe.br

Introduction

Dengue is currently the most important arthropod-borne disease,

affecting around 50 million people worldwide every year, mostly in

urban and semi-urban areas [1]. During the last decades, the disease

has spread to most tropical countries and has become an important

cause of death and hospitalizations by dengue hemorrhagic fever

and dengue shock syndrome [2]. South-east Asia is one of the most

affected regions, where dengue hemorrhagic fever is a leading cause

of morbidity and death among children [1]. In the Americas, a

significant increase in dengue incidence has been observed in the

last two decades [3].

Dengue can be caused by four distinct but antigenically related

serotypes which are mainly transmitted by Aedes aegypti mosquitoes.

The wide clinical spectrum ranges from asymptomatic infections

or mild illness, to the more severe forms of infection such as

dengue hemorrhagic fever and dengue shock syndrome. Infection

by one serotype produces long-life immunity to that serotype but

does not protect against infection by others [4].

A wide variety of factors influence the spatial and temporal

dynamics of mosquito populations and, therefore, dengue trans-

mission patterns in human populations [5]. Temperature, rainfall

and humidity interfere in all stages of vector development from the

emergence and viability of eggs, to the size and longevity of adult

mosquitoes, as well as their dispersal in the environment [6–13].

Additionally, factors such as unplanned urbanization, high human

population density [14], the precariousness of garbage collec-

tion systems and water supply [15,16] - frequent problems in

developing countries - favor the proliferation of breeding sites and

infection spread.

While the development of dengue vaccines is still underway

[17,18] and assuming that mosquito eradication is a remote

possibility, the only alternative of controlling dengue transmission

remains in keeping the vector population at the lowest possible

www.plosntds.org 1 January 2011 | Volume 5 | Issue 1 | e942



levels [19,2]. However, the threshold has not been established yet

[20].

For dengue control programs to be effective, information on

the occurrence of infection and disease in the population are

essential. However, as most dengue infections are asymptomatic

or unapparent, presenting themselves as non-differential fevers of

unknown etiology, surveillance systems based on the monitoring

and notification of symptomatic cases have low sensitivity

and are not capable of detecting low or sporadic transmission

[2,21].

Mathematical and statistical models have been developed in

order to provide a better understanding of the nature and dynamics

of the transmission of dengue infection, as well as predict outbreaks

and simulate the impact of control strategies in disease transmission

[22,16]. Most of these approaches are based on ordinary differential

equations or statistical models without exploring the spatial pattern

of disease transmission; e.g. [23–26]. A summary of the approaches

used up to 2006 was reviewed by Nishiura [27]. More recently,

models have been developed which incorporate the spatial structure

of dengue spread [28–32], as well as models that use complex

networks [33,34].

Another class of models used to investigate the disease

transmission process is that of cellular automata (CA) [35–39]

which are self-reproductive dynamic systems, where time and

space are discretized [40]. They are composed of a finite regular

lattice of cells, called cellular space, each one with an identical

pattern of local connections to other cells, and subjected to given

boundary conditions [39,41]. Each cell can assume a state, among

a finite set of states, which can change at every time-step according

to local transition rules (deterministic or stochastic) based on the

states of the cell and of its neighbors. Models based on cellular

automata have the advantage of being spatially explicit in the

sense that their elements can be individually tracked in space

through which the simulations are carried out. They constitute a

class of spatio-temporal dynamics models that allow the develop-

ment of a virtual environment that creates and explores different

scenarios of the dynamics of disease. CA-based models have been

used to study the dynamics of dengue fever [42,43,34]. Santos

et al. [42] considered the immature forms of Aedes aegipty in their

model to study the patterns of dengue in Salvador city, in the

Northeastern coast of Brazil. Ramchurn et al. [43] and Silva et al.

Author Summary

Dengue is the most rapidly spreading mosquito-borne
viral disease in the world and approximately 2.5 billion
people live in dengue endemic countries. In Brazil it is
mainly transmitted by Aedes aegypti mosquitoes. The wide
clinical spectrum ranges from asymptomatic infections or
mild illness, to the more severe forms of infection such as
dengue hemorrhagic fever or dengue shock syndrome.
The spread and dramatic increase in the occurrence of
dengue cases in tropical and subtropical countries has
been blamed on uncontrolled urbanization, population
growth and international traveling. Vaccines are under
development and the only current disease control strategy
is trying to keep the vector quantity at the lowest possible
levels. Mathematical models have been developed to help
understand the disease’s epidemiology. These models aim
not only to predict epidemics but also to expand the
capacity of phenomena explanation. We developed a
spatially explicit model to simulate the dengue transmis-
sion in a densely populated area. The model involves the
dynamic interactions between humans and mosquitoes
and takes into account human mobility as an important
factor of disease spread. We investigated the importance
of human population size, human renewal rate, household
infestation and ratio of vectors per person in the
maintenance of sustained viral circulation.

Table 1. Parameters set individually for each cell and for each individual (human or vector) and for unit of time.

Cell Parameters

Parameter Symbol Description Assumption

Number of humans in cell (i,j) Nh(i,j) Gaussian distribution with average
4 and deviation 2

To ensure that 68% of occupied cells
will have between 2 and 6 people

Vector-human ratio in cell (i,j) Nvh(i,j) Uniform probability density function within
the interval [0,maxv]

To be proportional to the number of
humans in cell (i,j)

Number of vectors in cell (i,j) Nv(i,j) Defined by int(Nvh(i,j) ? Nh(i,j)) +u;
where u = 1, with probability equal to the decimal part of Nvh(i,j) ? Nh(i,j), and u = 0,
otherwise

Individual Parameters

Parameter Symbol Description Assumption

Intrinsic incubation period (days) ti Gaussian distribution with
average 5.5 and deviation 1.5

To ensure that 68% of cases will be
between 4 and 7 days

Infective period in humans (days) tvir Gaussian distribution with
average 4.5 and deviation 1.5

To ensure that 68% of cases will be
between 3 and 6 days

Extrinsic incubation period (days) te Gaussian distribution with
average 9 and deviation 0.25

To ensure that 95% of cases will be
between 8.5 and 9.5 days

Individual Parameters by Unit of Time

Parameter Symbol Description

Number of bites of mosquito k on day t in cell (i,j) bv(i,j,k,t) Defined by int(bfv) +u;
where u = 1, with probability equal to the decimal part of bfv, and u = 0, otherwise

doi:10.1371/journal.pntd.0000942.t001
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[34] used a combination of cellular automata and scale free

network ideas to map the evolution of dengue fever.

We propose a stochastic cellular automata model that simulates

dengue transmission in a hypothetical population, aiming to

perform a qualitative analysis of factors that influence disease

transmission. Unlike the mathematical models based on differen-

tial equations, the proposed CA-based model of diffusion of

dengue fever uses heterogeneous rules for human mobility. The

role of human mobility in the transmission of infectious diseases

has been previously investigated [44–46], including in dengue

epidemics [32]. This article investigates the influence of factors

related to both humans (renewal rate and population size) and

vectors (house infestation index, vector density per human and

biting frequency) in the maintenance of viral circulation for

extended periods. The approach was based on the urban shape of

the populous Brasilia Teimosa neighborhood within the city of

Recife, Brazil. Previous surveys have found high Aedes aegypti

infestation rates [19] and prevalence of dengue seropositivity

higher than 90% in this area [47].

Methods

The proposed model takes into account existing knowledge

about the biological cycle and disease transmission of dengue

infection in humans and vectors. Although the model supports the

assumption of co-circulation of all serotypes, in this initial

approach the simplest scenario which considers the circulation of

only one serotype was simulated. Some parameters of the model

are constant while others follow a probability distribution (Table 1).

In this model, human population is not age-structured and vertical

transmission and climatic variability are not considered. The

development and implementation of the model were carried out

using MatLab, version 6.5.

Assumptions of the model
Dengue infection in humans. Infected human individuals

are not contagious during the intrinsic incubation period that

ranges between 4.5 and 7 days, with a small probability of

exceeding 10 days [20]. The viraemia occurs at the end of the

incubation period and lasts approximately 4 or 5 days, although it

might take up 12 days [20]. During this period, the infected

individuals are infective for the vector. Following the viraemia

period, the infected individuals become immune for the same

serotype, assuming recovery for that specific serotype.

Vector behavior and transmission cycle. Aedes aegypti

rarely fly long distances, reaching a maximum of 25 meters in

urban environments and being centered on the house where they

breed [48,49]. Although movement towards the nearest houses

may be intense, its dispersal is usually limited to a small area [50],

suggesting that people rather than mosquitoes are the primary

mode of dengue virus dissemination within and among

communities [1,51]. Only female mosquitoes bite hosts and their

movements are essentially done for searching food, shelter, mating

opportunities and oviposition sites [49].

These vectors feed almost exclusively on humans [52–54]. If a

susceptible vector bites an infected person during the viraemic

Figure 1. Ovitraps experiment in a survey conducted in the city of Recife, Brazil. Research conducted from April 2004 to April 2005,
counting 13 cycles of 28 days each, in four urban areas with the presence of Aedes aegypti mosquitoes. (A) Average number of Aedes aegypti eggs per
ovitrap per site. Legend in B. (B) Percentage of ovitraps with Aedes aegypti eggs inside, for each site. Despite the control intervention implemented
from December 2004 to April 2005 in sites 1 and 3 (corresponding to cycles 9-13 and to dry season), the percentage of ovitraps with Aedes aegypti
eggs showed no major changes (part B). Data modified from Regis et al. [19].
doi:10.1371/journal.pntd.0000942.g001

Figure 2. Illustration of the information stored in a non-empty cell of the H lattice.
doi:10.1371/journal.pntd.0000942.g002
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period, it may become infected and subsequently transmit the

virus to other healthy humans after an extrinsic incubation period

of 8 to 12 days [1,4]. Once infected, the female Aedes mosquito

carries the virus during its life span [1]. Aedes aegypti vectors are

very nervous feeders, disrupting the feeding process at the slightest

movement, only to return to the same or a different person to

continue feeding moments later. Due to this behavior, Aedes aegypti

females often feed on several persons during a single blood meal

and, if infectious, may infect multiple persons in a short time [4]. It

is assumed that the survival rate of Aedes aegypti females is not

dependent on their age [55], the vector’s averaged life span is

assumed to be 40 days [56] and that there is a 90% chance that a

bite of an infected mosquito transmit dengue virus to a susceptible

individual [55,57]. We found no information about the transmis-

sion probability from human to vector and assumed 90% for this

value.

With relation to the spatial distribution of vectors, based on a

survey conducted in the city of Recife using geo-referenced

ovitraps [19], we assumed that the house index patterns of Aedes

aegypti are normally very high year-round (above 90%), whereas

the total amount of vectors shows seasonal variability. Figure 1

shows the results of this research: while the number of eggs varies,

the percentage of positive ovitraps virtually does not change after

application of control measures (sites 1 and 3). The number of

vectors per house also varies between studies. For example, a study

in Puerto Rico found 5–10 Aedes aegypti females per residence [58],

whereas in Thailand it was estimated an average of 20 females per

room in each house [59].

The Spatially Explicit Transmission (SET) Model
The CA-based model consists of two bidimensional square

lattices, H and M, both of same size and spatial location,

representing the spaces occupied by humans and mosquitoes,

respectively. Each cell of H and M corresponds to a lot that can be

occupied by a building or be empty. The probability of a lot being

occupied by humans is rh. Each cell with position (i,j) that contain

humans is represented by a matrix, named H(i,j), where

information related to the humans living in the existing building

(intrinsic incubation period (ti), period of infectivity (tvir), status of

the individual in relation to disease and infection time) are stored.

Figure 2 illustrates the information stored in a non-empty cell

H(i,j) of the H lattice.

Assuming that Aedes aegypti are usually located in the places

where humans reside, the model states that a percentage rv of non

empty cells in the H lattice is infested by mosquitoes. This

percentage - called house index (HI) – represents the proportion of

mosquito-infested buildings. The model considers only Aedes aegypti

females. The population of female vectors in each cell is a function

of the number of humans and the vector/human ratio within the

corresponding cell in H lattice. The vector/human ratio varies

from building to building, following a uniform distribution in the

interval [0,maxv], where maxv is the maximum number of vectors

for each human assumed in the model.

In the M lattice each cell of position (i,j) which contain

mosquitoes is represented by a matrix M(i,j) that contains

information on the existing vector population in the corresponding

building. The matrix M(i,j) contains the following information

pertaining to each mosquito: the extrinsic incubation period (te),

the age of the vector, the state of the mosquito in relation to the

disease and the time of infection. Figure 3 illustrates the

information in a non empty unit in the M lattice.

At the beginning of each simulation, the model generates an

initial configuration for the H and M lattices, assuming that the

entire population (humans and vectors) are susceptible, except for

a single randomly chosen infected human. For this initial

configuration, the following parameters in each cell are pre-

determined: (1) the human population (Nh(i,j)); (2) the vector

population (Nv(i,j)); (3) the intrinsic incubation periods and

infectivity periods for each human and (4) the extrinsic incubation

periods for each vector. These parameters are summarized in

Table 1. The values assigned to individual parameters ti, tvir and te

are in agreement with literature [20,4,48,55,60].

The dynamics of human-mosquito interactions is based on the

following rule: every day each mosquito randomly selects one or a

few humans to bite, according to a daily frequency of bites bfv

(number of blood meals per day). Contact between humans and

mosquitoes can occur two ways: local and global contact. The

local contact is determined by the search strategy of mosquitoes for

Figure 3. Illustration of the information stored in a non-empty cell of the M lattice.
doi:10.1371/journal.pntd.0000942.g003

Figure 4. Configuration of the neighborhood rings of cell (i,j).
doi:10.1371/journal.pntd.0000942.g004
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human targets which reside nearby. The global contact is

determined by the movement of humans, which may come from

elsewhere and visit buildings where mosquitoes are found.

During the process of interaction between humans and

mosquitoes, each human can assume one of four states with

respect to each serotype: susceptible (S), exposed (E), infectious (I)

or recovered (R) and each vector can assume one of three states

with respect to each serotype: susceptible (S), exposed (E) and

infectious (I). The duration of the exposed state (infected but not

infectious) corresponds to the incubation period. If there is a

contact between a susceptible human and an infectious vector, the

human may become exposed with probability bvh. On the other

hand, if an infectious human has contact with a susceptible

mosquito, the latter becomes exposed at a probability bhv.

The human population was modeled considering a single

annual renewal rate (rnh), as a combination of births, deaths,

immigration and emigration. All newcomers are assumed to be

susceptible to the dengue virus. The total amount of humans and

mosquitoes was kept constant during all simulations. Mosquito

survival rate is assumed to satisfy a Poisson distribution.

The boundary conditions are periodic, which means that

opposite borders of the lattice are connected to each other to form

a toric topology [61]. Each time step corresponds to one day. The

constant parameters of the model are: Human population size (Nh),

percentage of human occupation (rh), house index (rv), maximum

ratio of vectors per human (maxv), mosquito daily biting frequency

(bfv), vector daily survival probability (ps), transmission probability

from human to vector (bhv), transmission probability from vector to

human (bvh), annual human renewal rate (rnh) and mobility

parameters. The parameters that vary by cell, individual or per

unit of time are described in Table 1, wherein function int(?) means

the integer part of.

Target choice by mosquitoes. The model also assumes that

the probability that vectors bite humans decreases as the distance

from its cell of origin increases. The random selection of the target-

cell by the mosquito depends on its flight range R, that is defined a

priori. The cell in which the mosquito resides is called central cell,

while the set of neighboring cells adjacent to the central cell is

named first neighborhood ring. The set of adjacent cells (external)

to the first neighborhood is named second neighborhood ring, and

so on. In this model, the flight range of mosquitoes indicates how

many neighborhood rings the vector can travel in search of a

human target. Some neighborhood rings of a generic cell are

illustrated in Figure 4.

At first, without considering human movements in the model,

for every mosquito a random human target is chosen in three

steps: (1st) Draw of a neighborhood ring, according to the vector of

predetermined probabilities r = (r0, r1, …, rR), where r0 .r1 . …

.rR e r0 +r1 + … +rR = 1; (2nd) Uniform random selection of a

occupied cell in the chosen neighborhood ring; (3rd) Uniform

random selection of a human inside the cell drawn in the previous

step.

Human Mobility. We consider random human mobility in

which a daily percentage of the human population leaves its

residence and randomly chooses other buildings to visit.

Movements can be homogeneous (assuming that all households

have the same characteristics) or concentrated in public locations.

The daily rate of human mobility (rmob) defines the fraction of

people that can visit other cells every day. Individuals which are

both infectious and symptomatic are assigned a mobility of zero, as

they remain at home or in hospital. If Ihi(t) is the number of

infectious humans at time t, then the percentage of individuals who

are infectious at time t is Ihi(t)/Nh. If rass is the percentage of

infectious who are asymptomatic, then the percentage of humans

who are both infectious and symptomatic at time t is

1{rassð Þ: Ihi(t)=Nhð Þ:

As these humans do not leave their homes during their

infectious periods, only the fraction

rmob
: 1{ 1{rassð Þ: Ihi(t)=Nhð Þ½ �

of people will move to visit other places. Among these, a

percentage rmobCom will move to public locations, which comprise

a proportion of rCom of the buildings in the H lattice, whereas the

fraction (12 rmobCom) will visit residences. The visited cells may

Table 2. Fixed parameters used to investigate the
maintenance of viral transmission.

Constant Parameters

Parameter Symbol Values

Percentage of human occupation rh 0.9

Transmission probability from human to vector bhv 0.9

Transmission probability from vector to human bvh 0.9

Mosquito daily survival probability ps 0.983

Neighborhood selection probabilities r (0.7, 0.3)

Percentage of asymptomatic infected humans rass 0.65

Overall rate of human mobility rmob 0.5

Mobility rate to public locations rmobCom 0.9

Percentage of public locations rCom 0.05

doi:10.1371/journal.pntd.0000942.t002

Table 3. Parameters used to investigate the maintenance of
viral transmission in the first set of simulations.

Parameter Symbol Values

Human population size Nh {2000, 4000, …, 12000}

Annual human renewal rate rnh {1, 2, …, 6} %

House index rv 0.9

Maximum ratio of vectors per human maxv 2

Mosquito daily bite rate bfv {1, 1.5}

doi:10.1371/journal.pntd.0000942.t003

Table 4. As in Table 3, but for the second set of simulations.

Parameter Symbol Values

Human population size Nh 8,000

Annual human renewal rate rnh 5%

House index rv {0.5, 2, 5, 10, 20,
30, 50, 70, 90} %

Maximum ratio of vectors per human maxv {0.5, 1, 2}

Mosquito daily bite rate bfv {1, 1.5}

doi:10.1371/journal.pntd.0000942.t004
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have mosquitoes with probability rv (here rv coincides with house

index). The mosquitoes that are in the visited cell can bite the

visitor with probability

1= 1zNh itarget,jtarget

� �� �
,

where (itarget,jtarget) is the position of the site chosen by mosquito for

its blood meal and Nh(itarget,jtarget) is the amount of humans in cell

(itarget,jtarget). Thus, the probability that a vector bites a visitor at

time t is

rvis~rmob
:rv
: 1{ 1{rassð Þ: Ihi tð Þ=Nhð Þ½ �:

1= 1zNh itarget,jtarget

� �� �� �
:rmdir itarget,jtarget

� �
,

where rmdir(itarget,jtarget) is defined by rmobCom, if (itarget,jtarget) is a public

location; and (1-rmobCom), if (itarget,jtarget) is a domestic site.

In the simulations that there are no public locations in the

cellular space (rmobCom = 0), the probability that a vector bites a

visitor in each cell (itarget,jtarget) at time t is simply

rvis~rmob
:rv
: 1{ 1{rassð Þ: Ihi tð Þ=Nhð Þ½ �: 1= 1zNh itarget,jtarget

� �� �� �
:

With human mobility taken into account, the third stage of the

choice of target by the mosquito changes to:

(3rd) with probability rvis, randomly select a visitor of any cell of

the H lattice; if that is not possible, select uniformly a human in cell

(itarget,jtarget).

For public locations, the maximum number of vectors per

human was calculated assuming that there is a fixed amount of

people in these places that spends the whole day on this site. This

amount is based on the same rule for de Nh(i,j) in Table 1.

Human Renewal Rate. Considering the initial dengue-naı̈ve

open population in the sense that human renewal is taken into

account, after a dengue epidemic, the small number of susceptible

individuals in addition to the births and immigration of new

healthy individuals allows the maintenance of viral transmission,

despite low rates. Through time, the number of susceptible

humans increases until it is sufficient to initiate a new outbreak.

This is a classic framework that helps to understand the periodicity

of epidemics [62]. We assume only positive or zero rates of human

renewal. Theoretically, the daily number of humans being

replaced by new susceptible ones would be

HNR~ rnh
:Nhð Þ=365:

Figure 5. The behavior of the compartmental model for humans and mosquitoes.
doi:10.1371/journal.pntd.0000942.g005

Figure 6. Spread pattern of dengue infection in a simulation without human mobility. Spread of infection for humans (top) and for
mosquitoes (bottom). Color legend in Table 5.
doi:10.1371/journal.pntd.0000942.g006

Dengue Model: Investigating Disease Persistence

www.plosntds.org 6 January 2011 | Volume 5 | Issue 1 | e942



However, the SET model approaches the daily number of

renewed humans at time t by

Nhr tð Þ~int HNRð Þzu,

where u = 1, with probability equal to the decimal part of HNR,

and u = 0, otherwise.

Active Viral Transmission. To investigate the values of the

minimum parameters required for maintenance of viral

transmission for extended periods, two sets of simulations were

performed with the number of iterations corresponding to seven

years. Our tests showed that this period is sufficient for steady-state

establishment.

For both sets of simulations, the stochastic parameters used are

those shown in Table 1 and the fixed parameters are given in

Table 2, while the parameters which differ in the two simulations

(both fixed and varying) are given in Tables 3 and 4. The

percentage of asymptomatic patients was chosen according to field

surveys conducted in the city of Recife, by the Aggeu Magalhães

research center (CPqAM; unpublished). The probability of daily

survival of the mosquitoes was chosen so that their average life was

40 days. The maximum number of vectors to humans in each

building was selected based on [63] and on the experience of the

CPqAM entomologists.

At first, we simulated the spread of dengue infection varying

human parameters (population sizes and renewal rates), while the

other model parameters remained fixed. Based on the observed

data of the Brasilia Teimosa neighborhood in Recife, where a high

density of Aedes aegypti eggs was registered, with positivity in more

than 90% of the homogeneously distributed traps during the entire

year [19], we assumed a high vector infestation in the simulations,

within 90% of the buildings. For each combination of variable

parameters in Table 3, we performed simulations with 50

replications, for which we recorded the cases showing viral

transmission (epidemic and the maintenance of viral transmission)

in the first six months. Among the recorded cases, we calculated

the percentage of replications in which viral transmission

remained active year after year, until the seventh year.

With the results of the first set of simulations, we fixed the size of

the human population and human renewal rate to values which

ensure a high chance of maintaining viral transmission for

extended periods. Then we performed the second set of

simulations, varying the house index and vector per person ratio,

in order to investigate the values that are able to eliminate viral

Figure 7. Spread pattern of dengue infection considering concentrated human mobility. Every day 50% of the population leaves its
home. Among these, 90% of them go to public locations (which corresponds to 5% of the cells) while the remainder visits other domiciles. Spread of
infection for humans (top) and for mosquitoes (bottom). Color legend in Table 5.
doi:10.1371/journal.pntd.0000942.g007

Figure 8. Spread pattern of dengue infection considering homogeneous human mobility. No public locations were considered: 50% of
people leave home every day and visit other domiciles. Spread of infection for humans (top) and for mosquitoes (bottom). Color legend in Table 5.
doi:10.1371/journal.pntd.0000942.g008
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transmission. For each combination of variable parameters in

Table 4, we performed simulations with 200 replications, from

which we recorded the cases showing viral transmission in the first

six months. Among the latter cases, we counted the percentage of

replications which viral transmission was sustained year after year

until the seventh year. The difference in the number of replications

for each set of simulations (for Table 3 and for Table 4) is due to

computational limitations in the first experiment, whose simula-

tions are time consuming due to high house index considered,

especially for larger human populations.

Results

The behavior of the compartmental model
Figure 5 shows the evolution of the SEIR framework for

humans and the SEI pattern for mosquitoes. Here, as well as in

subsequent figures, we considered for simplicity the infected state

as the sum of the individuals of exposed or infectious state at time

step t. Also, we considered a neighborhood with approximately

10,000 inhabitants and house infestation index of 90%. This

agrees qualitatively with the patterns of compartmental epidemi-

ological models [39,64,65].

Human Mobility
To study the effects of human movement, we conducted simple

experiments with different mobility configurations. The stochastic

parameters used are those shown in Table 1 and the fixed

parameters are given in Table 2. Other constants were: population

size of 10,000, annual human renewal rate of 0%, house index of

70%, mosquito daily bite rate of 1 and maximum ratio of vectors

per human of 2.

Figures 6 to 8 illustrate the spatial spread of dengue fever in

humans and mosquitoes through time. Each cell of the lattices in

these figures corresponded to a building or a empty lot and the

colors represent cell states, whose meanings are described in

Table 5. The wave front is clear when human mobility is not

considered (Figure 6). In the case of concentrated mobility in

public locations (Figure 7), small and clear foci of disease emerge

over time. As human mobility becomes more homogenous,

transmission foci become less clear.

The different propagation speeds of the disease can be observed

in Figure 9. The human movement rates and patterns influence

the shape of epidemic curves: the higher and more homogeneous

the mobility, the higher the amplitude of the epidemic curve and

more rapid its duration. Indeed, it was found that a human

mobility rate rmob of 10% would reduce the duration of the

epidemic to almost half.

Human Renewal Rate
Figure 10 shows the epidemic wave-front pattern for different

annual human renewal rates rnh in a population with approxi-

mately 10,000 inhabitants. While for rnh = 0% the epidemics

ended after 18 months, the viral transmission was kept active for

non zero renewal rates. In fact, the amplitude of the viral

transmission after the epidemic outbreak (in the second phase) was

related to rnh. However, we found that the renewal rates had no

effect in the duration and amplitude of the initial outbreak (not

shown).

The periodicity of the epidemics is shown in Figure 11. Fixing

the annual human renewal rate of 3.2% in an area with 10,000

inhabitants and considering a house index of 90%, we can note the

periodic behavior of the epidemics and the endemic state. After

the first major epidemic, small outbreaks occur at intervals of

about four years. This pattern of periodicity is consistent with

patterns observed in countries of Southeast Asia and in America

[1,66,67].

Active Viral Transmission
For the first set of simulations, using the range of parameters

described in Table 3, the percentage of replications in which an

epidemic outbreak occurred and viral transmission in the first six

months was over 70% in all sets of 50 replications. Figures 12 and

13 illustrate the proportion of cases, among those which the virus

was transmitted in the first six months, for which transmission was

maintained for a long period after the appearance of the serotype,

for both biting frequencies bfv = 1 and bfv = 1.5, respectively.

The results showed that for both frequencies of bites and for all

population sizes, the human renewal rate of 1% was not sufficient

to maintain viral transmission for more than three years, while for

2% of human renewal, in very few cases, viral circulation was

maintained for many years. The viral transmission was not

sustained with the combination of small human population with

low human renewal. In order to maintain viral transmission for a

long period it was necessary that at least one of these parameters

Table 5. Color legend for the cells’ states in the simulations.

Humans Mosquitoes

Dark blue Empty lot Without vectors

Blue There is at least a susceptible human and no infected in the cell All mosquitoes are susceptible

Orange to red Increasing number of infected humans Increasing number of infected mosquitoes

Green Immunes only -

doi:10.1371/journal.pntd.0000942.t005

Figure 9. Behavior of the epidemic curves for humans,
considering different configurations of human mobility.
doi:10.1371/journal.pntd.0000942.g009
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were not low. In the case of 8,000 inhabitants and 5% of annual

human renewal rate, the chance of sustained viral circulation was

higher than 50% (for both biting frequencies). Therefore, we chose

these values for the second set of simulations.

Figure 14 represents the percentage of cases that presented viral

transmission in six months for each set of 200 replications with

parameters of Table 4. The percentage of cases of viral

transmission in six months decreased with decreasing house index.

Nevertheless, we considered the cases with small values of house

index (less than or equal to 10%) and found that viral transmission

was not sustained for more than one year (not shown).

Figures 15 and 16 show the percentages of cases among those

with initial viral transmission, for which transmission was

maintained for extended periods. The results showed that the

combination of bfv = 1.5 with maxv = 2 and high house index was

sufficient to maintain a high probability of transmission for 7 years.

However, for both frequency of bites and maxv = 1, in very few

cases it was possible that house index between 20% and 30%

maintained viral transmission active for at least five years. The

results also show that the vector/human ratio influences the

maintenance of viral transmission: the lower this value, the lower

the viral transmission persistence.

Discussion

Noting the limitations inherent to any mathematical modeling,

we discuss the problem of viral transmission maintenance between

successive epidemic periods. This question was motivated by the

high incidence rates of dengue in densely populated areas of Recife

[19] in 2004 and 2005. For this, we created a stochastic cellular

automata model to represent the dynamics of dengue transmission

in a community in which important characteristics were

considered: human mobility and human renewal. Human

movement transcends the spatial and temporal scales, with

different influences on disease dynamics, because it influences

the exposure to other individuals and thus the transmission of

pathogens [44]. The simplest and traditional mathematical models

for the spread of infectious diseases assume homogeneous mixing

among individuals and although such models are robust, they do

not reflect reality. Here we presented a non homogeneous mobility

in the sense that every day most people visit public locations

containing mosquitoes. Although the model considers mosquitoes

in households, public locations are the main source of disease

spread. We showed that human movements, concentrated or not

in public locations, are responsible for the rapid development of

the epidemic, reaching a very large amount of people. The other

feature considered, human renewal, is responsible for the

continuous increase of susceptible humans, and therefore for

maintenance of viral transmission and the recurrence of outbreaks.

The simulations qualitatively repeated the cyclical pattern of

dengue epidemics [1,66,67].

With respect to the investigation of the maintenance of viral

transmission for extended periods, the question to be answered

was: Since the number of susceptible individuals in a naive

Figure 10. Maintenance of viral transmission in function of human renewal rate. (A) Two phases are clear: In the first, the epidemics with
an explosion of cases and in the second, a small but persistent viral circulation. (B) Zoom showing that the influence of the rnh is clear in the second
phase of the graphics.
doi:10.1371/journal.pntd.0000942.g010

Figure 11. Dengue relapse for one serotype. After the epidemic (shown at the left of A), few cases sustain viral transmission (magnified in B).
doi:10.1371/journal.pntd.0000942.g011
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Figure 12. Frequency of cases with sustained viral transmission for extended periods, considering one bite per day. Simulations
performed using the range of parameters described in Table 3, but for one bite per day. The values of human renewal rate are: 6%: blue; 5%: red; 4%:
dark green; 3%: green; 2%: black; 1%: light blue.
doi:10.1371/journal.pntd.0000942.g012

Figure 13. As in Figure 12, considering 1.5 bites per day.
doi:10.1371/journal.pntd.0000942.g013
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population is virtually exhausted after an epidemic outbreak, how

can the virus remain active between outbreaks? This issue was

exhaustively addressed in different scenarios, where we analyzed

the influence of some human and vector factors in the

maintenance of viral circulation during seven years, a sufficient

period for equilibrium of viral transmission [48].

The results of numerical experiments showed that with high

house index values combined with high/moderate vector/human

ratio, viral transmission was maintained for long periods, whereas

it was not when considering the combination of small human

population and low human renewal rates. The latter combination

led to disease extinction in the model. Therefore, for the

maintenance of viral transmission it was necessary that at least

one of these parameters were not low. The extinction situation also

happened when we considered house index values below 10%, for

human populations with approximately 8,000 inhabitants in all

cases of vector/human ratio. However, the SET model also

showed that viral transmission is possible for several years (with

low probability) considering low house index (between 20% and

30%), moderate ratio of vector per human (0–1 vector per person)

and small human populations (approximately 4,000 people). For

these cases, we believe that the random combination of factors in

the initial configuration of the CA-based model allowed the virus

to circulate for many years. The results of the SET model are

consistent with findings from the model of Newton and Reiter

[58], who concluded that viral transmission can be maintained

with low house index.

As the neighborhoods of large cities generally have populations

of at least 8,000 inhabitants, the model suggests that it is possible

that in these cities a small percentage of its neighborhoods have

the potential to sustain the virus for extended periods. For

example, considering a hypothetical metropolis of 6 million

inhabitants with house index of 30% and 750 neighborhoods of

approximately 8,000 inhabitants, the SET model showed that

about 1.5% of the city’s neighborhoods sustain viral circulation for

5 years (or roughly 11 neighborhoods). The persistence of viral

circulation is in agreement with the classic notion of extinction risk

and persistence in metapopulations [68]. If re is the probability

that one of N independent and identical occupied patches becomes

extinct in a certain period of time, the probability that all of them

become extinct is (re)
N, thus the probability of persistence of at

least one patch is 1-(re)
N. For the hypothetical metropolis

considered, the estimated probability for the persistence of viral

transmission in 5 years was 0.015, that means re = 1-

0.015 = 0.985. As we have N = 750 neighborhoods, a number

sufficiently large so that 1-(re)
N is nearly 1, the persistence of viral

transmission in at least one neighborhood is guaranteed. To

illustrate, Figure 17 shows the relation between the probability of

Figure 14. Percentage of replications which showed viral transmission in the first six months. 200 replications were performed for each
combination of parameters described in Table 4, where maxv means maximum ratio of vectors per human per building. Two values of mosquito daily
bite rate were used: 1 and 1.5.
doi:10.1371/journal.pntd.0000942.g014

Figure 15. Frequency of cases among those with initial transmission, for which viral transmission was sustained. Simulations
performed using the range of parameters described in Table 4, but for one bite per day. Results showed for five values of house index and three
values for maximum vector/human ratio: 2, 1 and 0.5.
doi:10.1371/journal.pntd.0000942.g015
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persistence of at least one patch (disease persistence) in five years

and the number of patches N, for three values of re. In the case of

re = 0.985, for N below 15 neighborhoods (corresponding to cities

with less than 120,000 inhabitants), the probability of disease

extinction is high. If we had N = 305 neighborhoods (which

corresponds to a city with 2,440,000 inhabitants), it was sufficient

to guarantee 99% of chance of persistence of at least one patch. In

fact, a simple analysis of the expression 1-(re)
N says that the greater

the value of re, the greater the value of N to ensure a high

probability that at least one patch persists. This can be examined

from the viewpoint of the relationship between the number of

neighborhoods N and the combination of house index and vector/

human ratio: the lower the vector infestation, the greater the value

of re, so the greater the value of N to ensure the disease persistence.

The same rule applies to the converse: the greater the vector

infestation, the lower the value of N to guarantee disease

persistence. Moreover, interactions between individuals from

different neighborhoods ensure a possibility of disease transmission

to other districts [45]. Thus, there is a likelihood of rotation of the

neighborhoods with viral circulation. This theory explains the

maintenance of viral transmission in large cities.

However, in real situations, the vector population fluctuates

according to a combination of meteorological factors [6–8,69,70],

which modulates the number of vectors in some seasons or years,

although the house index virtually does not change; Figure 1 and

[19]. On the other hand, in big cities where dengue is endemic,

while some districts have low infestation by vectors, others have

greater abundance (thus increasing the likelihood of maintaining

viral transmission for extended periods). The latter will ensure

sustaining the population of mosquitoes even at low levels, despite

the occurrence of seasonal variations in vector population. This

occurred in some neighborhoods of the city of Recife in 2004 and

2005, where evidence showed that the vector population was not

eliminated entirely by natural factors [19].

In practice, house index values should be zero or very close to

zero in order to eliminate viral transmission [56,71]. The SET

model also recommends the implementation of control measures

to drastically reduce the vector infestation, mainly for large cities.

Moreover, the model suggests that measured house index values

from field data are incorrect, since the circulation of the virus has

been found even in situations with measured house index below

3% [19,72,73]. In a survey in a district of the city of Recife in the

years 2004 and 2005 [19], a high density of Aedes aegypti eggs was

found in the region (site 1 in part B of Figure 1), while the house

index measured by health workers based on larval survey in the

same neighborhood and at the same time was 0%. This apparent

contradiction can be explained when considering the method of

calculating the house index. The big problem with regard to the

values of this index obtained from field data, is that the

methodology used in most programs for controlling Aedes aegypti,

based on larval survey, is not suitable for measuring the

abundance of mosquitoes [74], disguising the true value of the

house index. Thus, in agreement with Regis et al. [74], the SET

model suggests that better strategies should be implemented to

obtain the house index, in order to ensure better efficiency in the

control programs of Aedes aegypti.
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