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Each cell of a two-dimensional lattice is painted one of • colors, arranged in a 'color wheel'. 
The colors advance (k to k + 1 rood K) either automatically or by contact with at least a 
threshold number of successor colors in a prescribed local neighborhood. Discrete-time 
parallel systems of this sort in which color 0 updates by contact and the rest update 
automatically are called Greenberg-Hastings (GH) rules. A system in which all colors 
update by contact is called a cyclic cellular automation (CCA). Started from appropriate 
initial conditions, these models generate periodic traveling waves. Started from random 
configurations the same rules exhibit complex self-organization, typically characterized by 
nucleation of locally periodic 'ram's horns' or spirals. Corresponding random processes give 
rise to a variety of 'forest fire' equilibria that display large-scale stochastic wave fronts. This 
paper describes a framework, theoretically based, but relying on extensive interactive 
computer graphics experimentation, for investigation of the complex dynamics shared by 
excitable media in a broad spectrum of scientific contexts. By focusing on simple mathemat- 
ical prototypes we hope to obtain a better understanding of the basic organizational 
principles underlying spatially distributed oscillating systems. 

Keywords: Cellular automation, excitable medium, locally periodic, spiral, stable periodic 
object, Greenberg-Hastings model, cyclic CA, self-organization, phase transition, turbu- 
lence, bug, macaroni 

1. The rules 

A cellular automation (CA) is a dynamic configuration on 
a lattice of  sites that updates in parallel according to a 
local homogeneous deterministic rule (cf. Toffoli and Mar- 
golus, 1987). This paper  studies two families of  excitable 
cellular au tomata  that we call Greenberg-Hastings (GH)  
models and cyclic cellular automata (CCA). Each family is 
indexed by three positive integer-valued parameters: the 
range, p, of  interaction; the threshold, 0, of  sites needed 
for excitation; and the number  ~: of  available colors. We 
are interested in these CA rules because they emulate the 
behavior of  a wide range of complex, coherent, periodic 
wave phenomena in space. Color Plates A - H  illustrate 
some of  the patterns generated by G H  and CCA dynamics 
for different choices of  the parameters p, 0 and to. 

We will focus almost exclusively on the description of 
excitable CA rules in two dimensions, although many 
features of  our analysis apply more generally. The most 
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expedient planar lattice from a mathematical  point of  view 
is Z 2, the two-dimensional integers. For  graphical visualiza- 
tion, on the other hand, one uses a large finite lattice 
{0, 1 , . . . ,  L - 1 }2, typically with wrap-around at the boun- 
dary. An especially intriguing aspect of  our study is the 
interplay between computer  experimentation and deductive 
reasoning; without such 'symbiosis' ,  many  subtle aspects of  
these complex systems would elude our understanding. 

Let us now explain G H  and CCA rules in detail. Each 
cell of  the lattice (or pixel on the graphics screen) is 
painted with one of ~: colors, arranged in a 'color wheel', 
and labeled 0, 1 . . . .  , ~c -  1. Colors can only advance in 
one direction around the wheel: k ~ k  + 1 rood to. We 
assume throughout this paper  that ~c _> 3, so 'positive' and 
'negative' directions are distinguishable, although two- 
color variants also exhibit interesting behavior. Depending 
on the rule, colors either advance automatically or by 
contact during each discrete time unit. Advance by contact 
of  color k at site x means that k ~ k + 1 mod ~c if and only 
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if at least 0 neighboring sites within range p of x have value 
k + 1 mod ~c. Convenient interpretations of 'within range 
p '  use the diamond (l l) or box (l ~176 neighbor set of radius 
p. For instance, p = 1D yields the usual nearest neighbors: 
N, S, E, W; whereas p = 1B adds four more neighbors: 
NE, NW, SE, SW. We call systems 4, in which color 0 
updates by contact while all others advance automatically 
Greenberg-Hastings models, in honor of the authors of 
influential papers (Greenberg et al., 1978; Greenberg and 
Hastings, 1978) that studied the case p = 1D, 0 = 1, tc = 3. 
Corresponding systems ~t in which a// colors update by 
contact are called cyclic cellular automata. 

More formally, let [Ixll p denote the /P-norm of 
x = (Xl, x2) ~ Z 2, p ~ [1, oo], and introduce the neighbor- 
hoods JVp(x) = Jg'P(x) = {y: ][y -x ] l  p -< p}. For  given 
parameters p, 0 and ~, the update algorithms on 
{0, . . . ,  ~: - 1}-valued configurations are as follows: 

{ = ( i , ( x ) + l ) m o d ~ c  i f i , ( x ) > l  or 
# {y s yp(x) :  

it+l(x) i t ( Y )  = 1} >~ 0 
= i,  (x) otherwise 

~,-I-I (X) f 

(GH) 

= (#t(x) + 1) rood ~ if #{y  ~ JV'o(x): 
#,(y) = (#t(x) + 1) mod ~c} 
->0 

= ~, (x) otherwise 
(CCA) 

where # A is the cardinality of set A. 
We are particularly interested in the evolution of ex- 

citable CA rules from disordered initial states, so our 
processes typically start in a random configuration that 
independently paints each site with a random color (prob- 
ability 1/~c for each color). This paper has two primary 
objectives: to describe the rich 'terrain' of  large-scale self- 
organization exhibited by excitable CAs depending on 
parameters p, 0 and ~:; and to begin to identify mathemat- 
ical principles underlying the evolution of GH and CCA 
dynamics from 'chaos' to 'order'. We hope that this 
largely empirical investigation will help lay the foundation 
for a mathematical theory of excitable media with sub- 
stantive rigorous underpinnings. 

itely in the horizontal direction (or wrap around the 
computer screen). It is easy to verify that such a band, 
subject to either update scheme, generates an upward- 
traveling wave if the threshold 0 is sufficiently small. But the 
band dies out (vanishes) in G H  orfixates (stops changing) 
in CCA when 0 is large. Readers may want to accept these 
assertions on faith for n o w - - t h e y  will be easier to under- 
stand in the context of Section 6 - - b u t  precise statements 
are as follows. In the G H  case, if 0 < (2p + 1)[(p + 1)/2], 
then a wave propagates upward; each band in the wave has 
width w = p + 1 - [O/(2p + 1)]. If 0 > (2p + 1)[(p + 1)/2], 
then the configuration dies out. In the CCA case, if 
0 < (2p + 1)p, then a wave propagates upward; each band 
in the wave has width w = p. If  0 > (2p + l)p, then the 
initial configuration never changes. (Here [i] denotes the 
greatest integer less than or equal to i.) Surely waves can 
propagate through the lattice in any direction provided 0 
is suitably small. The horizontal and vertical orientations 
simply make computation of the cutoff easiest because they 
are especially suited to the box neighborhood. 

One might suspect, then, that an initially disordered 
system tries to self-organize into spatially-distributed 
waves. But do the dynamics have enough 'energy' to 
organize, and, if so, what happens when waves moving in 
different directions collide? The same topological principle 
that guarantees a cowlick on a hairy billiard ball suggests 
the formation of vortices of some kind. Such vortices may 
then give rise to stable structures that serve as 'centers' for 
coherent growing structures. For  instance, G H and CCA 
rules with p = 3B and 0 = 6 support stable periodic spiral 
pairs, sometimes called ram's horns, on a background of 
color 0. Figure 1, a gray-scale rendition of the eight-color 
case, illustrates the ability of ram's horns to reproduce 
themselves exactly while generating concentric periodic 
waves. 

It is tempting at this point to speculate on the role of 
parameters p, 0 and ~c. Larger range p involves a kind of 
averaging over lattice sites, so the corresponding wave 
shapes should become smoother, perhaps approaching 
some continuum limit. For  fixed p, as we have seen, the 
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2. Basic phenomenology 

How do GH and CCA dynamics evolve? Assume for 
simplicity that p = o% that is, the rules use box neighbor- 
hoods. Consider first an initial configuration comprised of 
contiguous horizontal 'bands' of  colors 1, . . . ,  ~ - 1 from 
top to bottom, on a background of color 0. Let each band 
have width p in the vertical direction and stretch indefin- 

IV III 
Fig. 1. Ram's horn dynamics (p = 3B, 0 = 6, ~c = 8) 
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threshold 0 regulates the spread of wave fronts. Moreover, 
0 influences the ability of the system to remain active and 
organize out of initial disorder. The number of colors ~c 
clearly dictates the period of waves, and also plays a key 
role in the evolution from randomness since only neigh- 
bors with adjacent colors promote updating by contact. 
Before beginning a detailed analysis of GH and CCA 
dynamics that will illuminate the parameter dependence, 
let us briefly review the existing literature on CA models of 
excitable media, and mention some examples of real-world 
spatial phenomena that have served as a primary motiva- 
tion for this kind of modeling. 

3. Background and connections 

Spatially distributed periodic waves occur in scientific 
contexts as diverse as: oscillating chemical reactions, such 
as the Belousov-Zhabotinski reaction (Winfree, 1974), 
and carbon monoxide oxidation (Gerhardt and Schuster, 
1989); atrial fibrillation (Winfree, 1987); the spread of 
epidemics (Murray et al., 1986); electrical transmission in 
neural networks (Hodgkin and Huxley, 1952); self-organi- 
zation of slime mold (Tomchik and Devreotes, 1981); 
algorithms for causal coherence in parallel computation 
(Bennett et al., 1990; Toffoli and Margolus, 1987, pp. 
90-95); and a theory of spiral galaxy formation (Freed- 
man and Madore, 1983). Kapral (1991) has written a 
survey of excitable media and discrete reactions that in- 
cludes about 200 references to journal articles and books 
in biology, computer science, chemistry, physics and phys- 
iology. Much of this literature is devoted to computer 
modeling of the listed phemomena, using CAs or more 
complicated coupled lattice maps. The methodology is 
overwhelmingly empirical; few findings are mathematically 
rigorous. CAs were pioneered by von Neumann and Ulam 
in the late 1940s (Toffoli and Margolus, 1987). At about 
the same time, Wiener and Rosenbluth (1946) analyzed 
discrete dynamics for excitable heart muscle. CA dynamics 
of the type we call GH, with p = 1D, 0 = 1, and ~c = 3, 
were formalized and studied by Greenberg et al. (1987) 
and Greenberg and Hastings (1987). Qualitatively similar 
CA rules with more general threshold and range have been 
considered recently by Toffoli and Margolus (1987, pp. 
82-84), Gerhardt et al. (1990) (for a popular account, see 
Dewdney, 1988), and Markus et al. (1991). We should also 
mention that there is widespread current interest in self- 
organization as a guiding principle of biological evolution; 
see Waldrop (1990) for a lively report on an 'artificial life' 
workshop. 

Our research on excitable CAs evolved from the study 
of closely related processes with random dynamics. Bram- 
son and Griffeath (1980) considered a continuous-time 
asynchronous Markov process on 7/ similar to the one- 
dimensional CCA with p = 1, 0 = 1, ~c > 3. They proved 

clustering for ~: -< 4 and fixation for ~c > 5. In that context, 
clustering means that every site changes color infinitely 
often but that any finite subset of the lattice is overwhelm- 
ingly likely to be all one color eventually; fixation means 
that every site is painted a final color with probability one. 
Fisch (1990; 1991) then obtained an analogous result for 
the CCA on 7/and calculated exact asymptotics concern- 
ing the rate of clustering for ~c = 3. The behavior of 
random cyclic systems in higher dimensions remained a 
mystery until Fisch and Griffeath implemented a real-time 
simulation on the Cellular Automation Machine (CAM). 
An expository article (Griffeath, 1988) describes the com- 
puter-aided discovery of an exotic evolution on 7/2 charac- 
terized by nucleation of wave droplets that interact to 
form a remarkably stable spiral-laden equilibrium. It came 
as a surprise that this scenario apparently occurs for any 
number of colors ~ -> 3. 

Unfortunately, mathematical results for the random 
cyclic system in two or more dimensions seem very hard to 
come by. So Fisch et al. (1991a) turned to the basic CCA 
o n  7/2 (jo = 1D, 0 = 1), hoping that deterministic dynamics 
would simplify matters. Indeed, this process ~t enjoys a 
number of regularity properties, essentially topological, 
that lead to a simple proof of local periodicity for any 
starting from a random initial state. We call a cellular 
automation ~t locally periodic (LP) if 

P((~t(x); t = 1, 2 , . . . )  is eventually periodic) = 1, 

for each x ~ 7/2 (la) 

with the understanding that some sites x may fixate, and 

inf P(~(x)  = i, ~t(Y) =J)  > 0 (lb) 
t ,x :Ay,  i , j  

In the basic CCA, the existence of certain stable configura- 
tions on loops, known as clocks, implies that each x 
changes color at every update from some time on. Hence 
all sites have period tc (see Fisch et al., 1991a; or Dewd- 
ney, 1981). Despite the contrast between statistical equi- 
librium in the random cyclic system and deterministic 
limiting behavior in ~,, on the computer screen both 
dynamics display nucleation of wave droplets and dy- 
namic formation of large spirals. (Griffeath (1988) con- 
tains pictures of a random evolution; Plate E of this paper 
shows self-organization in a basic CCA.) Thus it makes 
sense to view the random cyclic system as a perturbation 
of the corresponding cellular automaton. 

About a year ago, Rick Durrett (private communica- 
tion) pointed out to us that the basic Greenberg-Hastings 
model (p = 1D, 0 = 1, K = 3) enjoys the same regularity 
properties as the basic CCA but has additional simplifying 
features that make it even more amenable to mathematical 
analysis. (See Durrett and Steif, 1991, for several interest- 
ing rigorous results in one and two dimensions.) Durrett 
also noticed that the corresponding GH rules with larger 
numbers of colors display nucleation and spiral formula- 
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tion similar to that of the CCA. Moreover, he identified 
stable structures in the p = 1B, 0 = 2, x = 3 G H  model 
that seemed to generalize the notion of a clock to higher 
threshold, functioning as centers for self-organization. His 
observations prompted our attempts to incorporate G H  
and CCA dynamics into a unified framework, and were 
the direct inspiration for our investigation of  rules with 
higher threshold and range. 

While carrying out the CA experiments described in this 
paper, we also simulated some random GH models 
analogous to the random cyclic ones that we had encoun- 
tered first of all. Not  surprisingly, simulations again 
showed nucleation leading to an equilibrium of  coherent 
large-scale wave fronts. In this case, the steady-state indi- 
cates a close connection to the epidemic with regrowth, or 
'forest-fire model', that is studied in a beautiful paper by 
Durrett  and Neuhauser (1991). Evidently certain funda- 
mental multitype particle systems may also be viewed as 
perturbations of  excitable CAs. Consequently our interest 
in GH and CCA dynamics is fueled not only by their 
intrinsic significance but also by their potential to shed 
light on self-organization in random interactions. 

4. Ergodic classification 

Perhaps the most basic problem concerning GH and CCA 
dynamics is the classification of ergodic behavior, depend- 
ing on p, 0 and x. Ofie of the main objectives of this paper 
is to identify several qualitatively distinct possible limiting 
'phases', as evidenced by Plates A - H ,  and suggest how the 
three parameters determine the phase of a given rule. 

First let us mention a simple extension of  the main 
argument in Fisch et al. (1991a). Namely, if 0 = 1, then 
for any p and x > 3 the excitable systems.of both types on 
7/2 are locally periodic with period x. In other words, every 
site updates every time eventually, but sites sufficiently far 
apart are typically out of phase. The gist of the proof  goes 
as follows. Somewhere in the random initial state there is 
a clock: a loop of sites on which all x colors are arranged 
cyclically (perhaps cycling more than once). Since 0 = 1, 
the color at every site of the clock advances every time, 
regardless of the configuration at sites that do not belong 
to the clock. Thus the set d of sites that eventually change 
color every time is nonempty. Now suppose that x r d ,  
y E d ,  and [lY - x I[~ < P" It follows that the color at y 
exceeds the color at x by 1 (mod x) at some time t. But 
then, again because 0 = 1, y forces x to advance every time 
after t, a contradiction. Therefore d = g 2 as claimed. 
With at least a certain positive probability that depends 
only on x, distinct sites x and y are 'slaved' to clocks that 
are out of phase, so property lb holds as well. 

To see that not all GH and CCA rules on 7/2 are locally 
periodic, let us now demonstrate different behavior when 
the threshold 0 is sufficiently large. For  simplicity consider 

box (l ~ neighborhoods. First, for G H  dynamics, we 
claim that 

if 0 > 2p 2 + 5p -k- 1, then ~t dies out strongly (2) 

(that is, the color at every site x is eventually 0 with 
probability one). The key observation is that, in this (p, 0) 
regime, a large lattice disk of  0s expands deterministically 
with at least a certain positive speed. To see this, set 

DR ---- {Y e 7/2: I[Y 112 -< R} 

= (x  7/2: R < Ilxl12 -< R + 1} (3) 
i f  R is sufficiently large (R > 30p 2, say), then in the 
vicinity of  x e dDR the edge of  DR is almost linear. As a 
consequence at least (p - 1)(2p + 1) neighbors of x must 
lie within DR; for a proof  of this fact see the Appendix. 
Even if all remaining neighbors of  y are excited ( -- 1), 
their total is at most ( 2 p + 1 )  2 - ( p - 1 ) ( 2 p + l ) - l =  
2p 2 + 5p + 1, which is below threshold. The same princi- 
ple clearly applies to x eDR. Hence a 0 at x eDR +I  
cannot possibly change to 1 if DR has all 0s. Therefore, 
starting from some translate of  DR that has all 0s in the 
initial random configuration, with R > 30p 2, successive 
disks are deterministically covered by 0s within at most x 
updates. We conclude that P(~t (x) = 0 eventually in t) = 1 
for each x, as claimed. 

Turning to the CCA (t, a variation on the same argument 
shows that 

if 0 > 2p 2 + 5p + 1 and tc > 2p(p + 1), then ~ fixates (4) 

(that is, every site x has a final color with probability one). 
As before, an initial configuration of all 0s on a sufficiently 
large DRo cannot possibly change. Moreover, for any R0, 
x ~ ODR has at most 2p(p + 1) neighbors within D R. Again, 
see the Appendix for a proof. Suppose that DR fixates at 
some time t. Then, by the hypothesis on x, some color k is 
missing from Y x  n DR at all times after t. Even if all 
remaining neighbors of x have color k at some later time, 
x cannot make a transition to color k for the same reason 
as in the G H  case. Hence DR + 1 must also fixate eventually. 
By induction, any x ~ 7/2 fixates with probability one. 

Thus we see that G H  and CCA models each exhibit at 
least two distinct ergodic behaviors, depending on p, 0 and 
~:. But are there other possibilities? And is it possible to 
distinguish different kinds of local periodicity? In light of 
the complex self-organization characteristic of excitable 
media, it makes sense to enlist the aid of the computer as 
we attempt to answer these fundamental questions. 

5. Modeling environments 

Two computer  graphics facilities were used for the exten- 
sive CA experimentation that will be described throughout 
the remainder of this paper. Before proceeding, let us 
describe them briefly. 
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5.1. EXCITE!  

We have written interactive experimental software (Fisch 
and Griffeath, 1991) expressly for the study of GH and 
CCA rules, and their randomized counterparts, with 
p <-10. The program, called EXC1TE!, runs on IBM- 
compatible PCs equipped with either EGA or prefer- 
ably VGA color graphics. Plates A - H  and all the figures 
in this paper were generated by our software. Since 
parallel updating of large arrays is very computation- 
intensive we recommend a 386 machine, but com- 
parable images can be 'grown from seed' (for example, 
overnight) on slower computers. EXCITE! is being dis- 
tributed as freeware, available by request from David 
Griffeath, Dept of Mathematics, University of Wisconsin, 
Madison, WI 53706, USA (griffeat@math.wisc.edu). Any- 
one who wishes to confirm findings reported here or 
experiment on their own is encouraged to request a copy. 
We have tried to make this paper readable without help 
from a PC, but strongly urge readers to try at least a few 
experiments. The distribution disk contains two slightly 
different executable versions of the main program, a 'great- 
est hits' file that identifies many of the most interesting 
parameter choices, a collection of windows designed for 
'planting' in certain rules, the ram's horn picture that 
generates Fig. 1, and a READ.ME file of documentation. 

Our software is designed so that choice of rules and 
interaction with the dynamics takes place on a control 
panel text screen. A key press switches between the 
control panel and graphics screen. By choosing from menus 
and entering data, users are able to: 

(1) Pick GH or CCA, either random or deterministic, 
and specify parameters p (D or B), 0 and ~c; 

(2) Specify an array size from 25 x 25 to 640 x 480; 
(3) Set the boundary condition to wrap-around, free, or 

all ls; 
(4) Run a dynamic either until a key is pressed or until 

a predetermined final time; 
(5) Save the current time and configuration to disk 

(as a .PIC file); 
(6) Initialize the dynamic from a random or 'special' 

configuration, solid color, or pre-saved .PIC file; 
(7) Cut or paste a central window in a configuration, 

up to size 23 x 23 (as a .WND file); 
(8) Zoom the current window to display numerical 

values and edit these manually; 
(9) Test for the period of the process at prescribed sites; 
(10) Shift the configuration horizontally or vertically by 

any offset; 
(11) Change the update probability in randomized sys- 

tems; 
(12) Insert or delete rules in the greatest hits file and edit 

accompanying descriptions. 

Several more menu options are also available. We began 
writing EXCITE! in order to carry out the experiments 
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described in this paper. By now the program has evolved 
into a rather flexible modeling environment that we hope 
will provide a useful template for other developers of 
complex systems software. 

5.2. Three CAMs plus wires 

The Cellular Automaton Machine (CAM) is a pseudo-par- 
allel processor invented by Toffoli and Margolus (1987) 
and implemented as a plug-in board for the IBM PC. CAM 
has the ability to update nearest neighbor CA rules on a 
256 • 256 array at speeds up to 60 updates per second. If  
the rule is simple enough (for instance, p = 1D, ~ -< 4) this 
remarkable device can display 'real-time' dynamics, often 
yielding insights into system behavior that are difficult to 
glean from still frames. Unfortunately most of the rich 
phenomenology exhibited by GH and CCA rules exceeds 
the limitations of a single CAM. However Toffoli and 
Margolus wisely designed their hardware so that several 
CAMs could be connected in parallel, and included a 'user 
connector' that allows dedicated custom devices to be 
interfaced as well. By piggybacking three CAMs and 
designing an external circuit board to handle most of the 
CA logic, we have constructed a device that computes GH 
and CCA rules for box neighborhoods with range p -< 4, 
thresholds 0 -< 15, and tc _< 16 colors. Performance deterio- 
rates as p increases, but a 256 • 256 array typically updates 
several times per second. We have also devised a 'scooping' 
procedure that uses the CAMs to drive arrays of arbitrary 
size, subject only to memory constraints of the host com- 
puter. We expect that the CAMs will be particularly useful 
as we begin to study subtle varieties of self-organization 
which take place on very large length scales. 

6. Stable periodic objects 

To motivate a key concept in the analysis of excitable CA 
rules, we now describe our first experiment (which the 
reader can perform either using EXCITE! or by writing a 
little computer program). Consider the GH rule with 
parameters p = 2B, 0 = 3, tc = 8. Start from a (pseudo-) 
random array of eight colors over a lattice of size 
100 x 100, say, and let the dynamic evolve. Within the first 
few time steps the system will almost die out. But, except 
on a bad day, a few isolated clusters of excited states ( = 1 s) 
will persist. These rare pockets of activity generate ram's 
horns that emit concentric cyclic waves. The waves spread 
out until they cover the entire lattice. Wave fronts emanat- 
ing from different centers annihilate upon collision, and a 
final locally periodic pattern is formed. Plate A shows an 
intermediate stage in the evolution of such an experiment 
on a 512 x 400 grid. 

Upon closer inspection of a ram's horns' structure, we 
find that the spiral pairs have centers comprised of period- 
8 cyclic patterns. For instance, in one of our experiments 
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a spiral center stabilized as follows: 

2 1  
2 2 1 0  

3 3 3 1 0 0  (5) 
4 4 5 7 7 7  

4 5 6 6  
5 6  

Note that this finite configuration updates every time, 
irrespective of the surroundings, since each color finds all 
three representatives of the next color within l~ 2. 
Such stable periodic objects (SPOs) play a central role in the 
mathematics of GH and CCA dynamics. For  a rule with 
parameters (p, 0, ~c), an SPO is a finite configuration of 
colors at sites such that every site with color k has at least 
0 neighbors within range p of color k + 1 mod ~c. Just as 
in the example above, SPOs cycle regardless of their 
environment. Configuration 5 is actually minimal, in the 
sense that no proper subpattern is also an SPO. We are 
particularly interested in minimal SPOs, since they function 
as immutable organizing centers. SPOs were called demons 
and minimal SPOs were called clocks in the paper by Fisch 
et al. (1991a) on the basic CCA with p = 1D, 0 = 1. 

The existence of SPOs for a given rule guarantees their 
presence somewhere in an initial random configuration 
over 772 , and therefore ensures that, on the infinite lattice, 
a GH model cannot die out (nor can a CCA fixate). Thus 
Property 2 immediately shows, for box neighborhoods, 
that 

if 0 > 2p 2 + 5p + 1, then (p, 0, ~:)-SPOs do not exist 

for any x > 3 (6) 

When 0 is sufficiently small compared to p2, on the other 
hand, waves are able to 'turn corners' and SPOs exist for 
an arbitrary number of  colors. Again for box neighbor- 
hoods, we claim that 

i f 0  1 2 < ~ p , then (p, 0, ~c)-SPOs exist for all ~ > 3 (7) 

To see this, note that lattice squares with [(p + 1)/2] cells 
on a side, arranged and colored thus: 

0s ll2~sS 

ensure that all 0s and ls advance (in either GH or CCA 
satisfying the hypothesis of display (7). Moreover, there is 
no difficulty adjoining successively colored squares of the 
same size in either the horizontal or vertical direction. 
Thus we can make an SPO in the shape of a 'rectangular 
ring' that consists of 2~c such squares cycling through the 
~c colors exactly twice. 

For each range p there is evidently a critical threshold 
0c below which SPOs exist for any number of colors, but 
above which SPOs do not exist when K is large. Evidently 
the cutoff is of order p2 as p ~ oe. But how do we decide 

whether an excitable CA with given parameters (p, 0, tr 
possesses SPOs? A natural approach is to observe the 
evolution of large finite systems started from random 
initial states and see whether stable structures emerge. 
For  our second experiment we try this approach on the 
G H  rule with p = 2 B ,  0 = 4 ,  x = 5 .  As before, rare 
pockets of ls persist and organize into wave fronts. 
But now the waves do not bend so easily, and annihila- 
tion between colliding waves gives rise to an apparent 
statistical equilibrium of incoherent wave pieces that we 
informally call 'macaroni'. No matter how large a real- 
world graphics array we use, and no matter how long we 
run the dynamic, there is no sign of stability. Based on 
computer visualization, it is extremely tempting to conjec- 
ture that the corresponding infinite system is not locally 
periodic. Last spring, however, one of us ( R F ) - - t o  the 
great surprise of the others--discovered the nice SPO 
shown in Fig. 2. His method? Inspired doodling with 
paper and pencil on a piece of graph paper. Since then, 
Rick Durrett  has shown us a similar but smaller SPO for 
(2B, 4, 6) containing 108 sites. We encourage the reader 
to estimate the chance that such a structure would be 
present initially on a computer screen, or emerge from 
macaroni. 

Using EXCITE!, it is a simple matter to 'plant' some of  
these structures in an initial random configuration. 
Plate B shows the result. The metastable background of 
macaroni is gradually replaced by waves emanating 
from the SPOs. Although the limiting state of  the finite 
system will be much more complex than that of  the rule 
in Plate A, it is apparently locally periodic with period 
K = 5 .  

Another very intriguing G H  family are the models with 
p = l B  and 0 = 2 .  If  ~c=3 the system settles into a 
'noisy' locally periodic state very quickly. The case ~c = 4, 
shown in Plate C, is particularly exotic. When the nucle- 
ation dust clears, we are confronted with a strange and 
varied assortment of organized structures. Some are bugs 
that move around like gliders in Conway's GAME OF LIFE 
(see, for example, Toffoli and Margolus, 1987) until they 

Fig. 2. A stable periodic object (p = 2B, 0 = 4, • = 5) 
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collide with something: 

3 2 1  
3 2 1 (O's) (8a) 

Elsewhere clocks emerge; for instance: 

0 2  
1 3 1 3  
2 2 0 0 (8b) 
1 3 1 3  

O 2  

Other more complicated growing structures abound. But 
in the end, every site would appear to cycle with period x. 
As soon as there are five or more colors, the only surviv- 
ing structures visible on a graphics array of  any real-world 
size are bugs analogous to structure 8a. These bugs wan- 
der about in the four horizontal and vertical directions 
until they smash into one another, an event that usually 
but not always has dire consequences. One would guess 
that the system dies out slowly. But rather incredibly, after 
several months of false impressions, D. Pritikin (private 
communication) discovered the SPO in Fig. 3. EXCITE! 
comes with a ready-made window of Pritikin's bow tie. 
Plant it and watch it grow! 

The last few examples dramatically illustrate the limits 
of computer visualization when dealing with excitable 
automata; several more stories with the same moral will 
follow. They also suggest that a rich set of possible ergodic 
behaviors may arise for intermediate threshold values. 
Spirals are the rule when 0 is small, and for large 0 the 
systems grind to a halt, but in-between and for relatively 
small ~: there may exist SPOs that are extremely rare 
statistically, with an architecture based on complex and 
exotic organizational principles. As further evidence of  
this scenario, Pritikin has now produced a 'butterfly' SPO 
for the ~ = 6 case of p = 1B, 0 = 2. His example, also on 
the EXCITE! disk, has more than 200 sites; we invite the 
reader to find it. Do SPOs exist for all K in this simple case 
of eight nearest neighbors and threshold 2? We suspect 
not, but without any compelling rationale. If  our hunch is 
right, then what is the highest number of possible colors? 

The next section will suggest that a phase transition in 
the ergodic behavior of GH and CCA rules is governed by 

3 3 2  2 3  3 
2 4 4 3 4 1 0  0 1 4 3 4 4 2  

1 0 3 0 0 2 0 4 1  1 4 0 2 0 0 3 0 1  
2 1 2 1 1 3 2 3 2 3 2 3 1 1 2 1 2  

1 0 3 0 0 2 0 4 1  1 4 0 2 0 0 3 0 1  
2 4 4 3 4 1 0  0 1 4 3 4 4 2  

3 3 2  2 3  3 

the question of  existence of SPOs. Even without this 
compelling connection to the dynamics, we find stable 
periodic objects to be intriguing combinatorial structures 
in their own right. 

7. Engineering 

Computer-generated dynamics from random initial states 
evidently do not always tell the whole story, so for addi- 
tional insight we carry out various experiments specifically 
designed to display aspects of wave propagation. Let us 
first describe the band test for G H  rules that is a 'special' 
initialization option in EXCITE! The starting state is an 
adjacent arrangement of horizontal bands, each of  width 
w -> p, with ls at the top and (to - 1)s at the bottom, on a 
background of 0s. This is like the traveling wave described 
in Section 2, except that bands have a finite (horizontal) 
length l of our choosing. The evolution until t = 20 for the 
'macaroni' rule of Fig. 2 is shown in Fig. 4 (w = 6, l = 25). 

The first thing to notice is that the ends of the wave 
bend inwards, albeit slowly in this instance. They are 
trying to make ram's horns. One can imagine that if the 
threshold were lower--say,  0 = 3 - - t h e n  the evolution 
would produce a tight spiral pair with SPOs at its two 
centers. This is indeed the case: the band test gives rise to 
stable centers for octagonal waves like those formed from 
a random initial state in Plate A. The exactly reproducing 
structure I of Fig. 1 was also obtained by means of a band 
test. However the excitation in Fig. 4 does not manage to 
reproduce: its ends collide prematurely, yielding only a 
bug that does not grow and escapes with the same velocity 
as the ring. To make a structure that generates periodic 
waves on a background of 0s there is a simple remedy: 
increase the length l of the band test. (In this case one 
could also reduce the initial widths w to 2.) However, if 
the resulting object has a period exceeding x, due to wide 
bands of  0s, then it might be overrun by metastable 
macaroni (the environment of Plate B). The strongest case 

t = 5  t = l O  

63 
t = 2 0  t = 1 5  

Fig. 3. Pritikin's bow tie: a stable periodic object with complex 
architecture Fig. 4. A band test (GH, p = 2B, 0 = 4, x = 5) 
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SOME SMALG GH BUGS 

/ - -x  
p = I B ,  0 = 2  p = 3 B ,  0 = 8  

p=4D, 0 = 7  p=4B, 6=13 

Fig. 5. Some small GH bugs 

for local periodicity can be made if we manage to engineer 
a bona fide SPO. We will return to this issue later. 

For a given range p, how does the band test behave as 
the threshold 0 increases? Beyond a certain cutoff, wave 
fragments are unable to bend completely inward, and so 
cannot generate cyclic rings. Just above this critical value, 
for all small neighborhoods except 1D, there are two 
possibilities. In some cases wave ends are vulnerable, so 
the length of any band gradually decreases to 0. But in 
other cases a sufficiently long wave piece manages to 
survive without making rings: instead the band test creates 
a viable bug. Throughout  this discussion we will use the 
term bug rather generally to describe waves with perma- 
nent ends that survive under G H  dynamics in an environ- 
ment of  all 0s. Figure 5 shows examples of  horizontally 
and vertically moving bugs for some rules with small 
parameter  values. We have encountered bugs moving at 
45 ~ to the horizontal in some cases; perhaps other orienta- 
tions are possible as well. It is tempting to make a 
distinction between structures that simply move along with 
a constant or periodic shape like (8a) and those that grow 
in size. Informally, we sometimes refer to the latter kind of 
bugs as worms. 

Even if bugs with ends die, it may still be possible for 
suitably shaped rings of  excitation to propagate. The 
simplest example of  this rather subtle phenomenon has 
parameters p = 3D, 0 = 4. No band test survives for these 
values. However, if we start f rom all l s on the lattice 
octagon .Ars~(0) c ~ ( 0 ) ,  then a stable octagonal ring 
spreads outward. Intriguing and delicate nonmonotonicity 
comes into play in this situation: excitation dies out starting 
from all ls on either of the larger sets .A/'~(0) or .Ar~(0). 
Roughly speaking, the corners of  a diamond or box are too 
vulnerable, so started from those configurations the ring 
breaks into four disjoint, short-lived fragments. 

Increasing the threshold still further, we know from 
Section 2 that, for box neighborhoods, even infinite hori- 
zontal bands die out as soon as 0 > (2p + 1)[(p + 1)/2]. In 
this regime wave fronts self-destruct globally, so rings of  
any size or shape die out. A final transition Occurs for 

0 > p2 in the diamond case and 0 > p(2p + 1) in the box 
case. The reader can easily verify that once the threshold 
is this large, horizontal and vertical wave fronts cannot  
advance at all. Thus the dynamics are convex-confined, 
and an isolated box of excitation disappears in one time 
step. 

Let us conclude our overview of band tests with some 
remarks about  the role of  K. As long as one is studying 
bug or ring propagation, the number of  colors is not 
particu!arly important: directed spread of leading ls onto 
a background of 0s is unaffected by trailing colors. (There 
is also no reason to start f rom a band width w greater than 
p.) The only exception to this principle is x = 3, in which 
case ' feedback'  excitation sometimes occurs behind a bug 
or within a ring. The feedback can cause bugs to stabilize 
as periodic structures similar to ram's  horns, and reinforce 
rings with internal 'snowflake' patterns. Particularly amus- 
ing examples of  these effects, for p = 4B and ~ = 3, are 
exhibited by a band test when 0 = 13, and by an initial 
box X ~ ( 0 )  of  ls when 0 = 14. To avoid such complicat- 
ing features we typically use band tests with ~ = 4 for bugs 
and rings, or K = 8 if a longer history of  the wave front is 
desired. In cases where bands can bend completely the 
choice of  ~c is much more important:  too few colors can 
lead to a periodic wave that contains wide expanses of  0s, 
whereas too many  colors can interfere with the excitation 
as it attempts to fold in on itself. 

We now turn to a parallel exploration of wave propaga-  
tion in cyclic cellular automata.  I f  0 is small enough that 
the band test makes ram's  horns for GH,  then essentially 
the same behavior occurs for CCA, that is, stable spiral 
pairs arise. However, for threshold values that produce 
bugs or die out under GH,  the corresponding CCA fixates 
from the band test. Another initial cond i t i on - -more  tai- 
lored to cyclic dynamics--consis ts  of  a periodic arrange- 
ment of  large squares (on a background of color 0, say). 
For  example, if ~c = 5 we might try a configuration of 
w x w squares arranged thus: 

ls 2s 3s 
(0s) 

0s 4s 

Such a loop test, with w = 4p, is the default 'special' 
initialization for CCA rules in EXCITE! The rough idea is 
to induce a vortex as the colors chase each other around, 
and then see whether a stable center for a spiral is formed. 
Not  surprisingly, the loop test makes a spiral with ease 
whenever the band test yields a spiral pair. But for many 
0 such that the band test fixates, we encounter an unex- 
pected phenomenon: loop-test behavior depends in a fun- 
damental way on whether ~ ~ {3, 4}, or K > 5. 

With three or four colors the loop test makes spirals as 
long as the rule is not convex-confined. These structures, 
symmetric in the colors, have a period exceeding to. The 
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5 5 0 0 1 1 2 2 2 2  
5 0 0 1 1 2 2 3 3 2  
5 0 0 1 1 2 3 3 3 3  
5 5 0 3 1 1 0 4 4 3  
4 5 5 4 3 0 4 4 4 4  
4 4 4 4 0 3 4 5 5 4  
3 4 4 0 1 1 3 0 5 5  
3 3 3 3 2 1 1 0 0 5  
2 3 3 2 2 1 1 0 0 5  
2 2 2 2 1 1 0 0 5 5  

Fig. 6. An organizing center with two strands (CCA, p = 1B, 
0 =2, ~c =6) 

spirals are large if x = 4 and enormous if tc = 3. Especially 
with three colors, it may be necessary to choose a very big 
w. Some nice examples are (p, 0, x) values of (1B, 3, 3), 
(1B, 3,4), (3B, 9, 3), and (3B, 8,4). 

In the same 0-regime, for ~ > 5 the loop test tries to 
form a spiral but fails. No matter how big we make the 
initial squares, somehow there is not enough room at the 
center of the vortex to support a cohesive structure. After 
a few time steps, some pair of adjacent colors is pulled 
apart and the vortex self-destructs, leaving behind a rather 
curious assortment of  debris. Try, for example, (1 B, 3, 5) 
with w = 20. 

Let us end this section by discussing the fascinating 
CCA family with p = 1B, 0 = 2. Loop tests for ~c = 3 
(w = 20) and x = 4 (w = 4) make large spirals. For tc > 5, 
as explained above, loop tests fail to produce periodic 
structures. But are there other spiral-like arrangements 
that might thrive in a chaotic or fixated environment? 
After some experimentation, we have discovered certain 
delicately arranged organizing centers that give rise to 
interwoven sprial strands. Figure 6 shows such a center, 
with two strands, for the six-color rule; the resulting 
dynamic is displayed in the title screen of EXCITE! Another 
arrangement with four strands is on the disk. Either 
pattern generates a creature that propagates with ease. 
Similar constructions have been carried out with 

= 7  . . . . .  12; apparently there is at least one viable 
multistranded center for all x > 6. An extensive search has 
failed to produce such a creature for the five-color rule, so 
we suspect that none exists. We would love to be proved 
wrong! 

8. The data and phase portraits 

Recall that our primary objective is to propose a classifica- 
tion of  ergodic behavior in GH and CCA dynamics as a 
function of  range, threshold, and number of colors. This 
section begins with a formulation of five cutoffs in 0 for 
each fixed p, based on wave-front characteristics and 
existence of SPOs. Then we present experimental data 
enumerating each of  the cutoff values for all diamond and 
box neighborhoods with p -< 6. After that we describe the 

behavior of excitable CA rules started from random 
configurations, as observed on large finite arrays using 
EXCITE! and 3 CAMs plus wires. We will see that the given 
cutoffs coincide with apparent phase transitions in . the  
evolutions of infinite systems from initial noise. Finally, 
threshold-range scaling suggested by our data will be 
explained in terms of a limiting Euclidean wave dynamics 
as 0 ~ oo and p ---> o% with O / p 2 ~ c  ~ (0, 4). 

First, for a given range p neighborhood (diamond or 
box), let us identify the following threshold cutoffs in 
increasing order. Since 0 is integer-valued, each cutoff 
takes the form n ] n + 1, meaning that one state of  affairs 
occurs for 0 < n while another occurs for 0 > n + 1. 

�9 bend(p). Below bend the G H  band test, with • = 4, 
w = p, and I sufficiently large, makes stable periodic struc- 
tures that generate waves forever; above bend the band is 
unable to fold in on itself completely, and so cannot 
reproduce indefinitely. 

�9 bug(p). Below bug the G H  band test, with ~c = 4, 
w = p, and 1 sufficiently large, generates a wave front that 
survives forever; above bug the band has vulnerable ends 
and so dies. 

�9 ball(p). Below ball the G H  rule, with K = 4, starting 
from all ls on a suitable finite set of  sites, produces a ring 
of  excitation that survives forever; above ball any such 
ring is vulnerable somewhere and eventually breaks into 
fragments that die out. The set of  ls that produces a viable 
ring may need to be quite large and have the right shape. 

�9 spo3 (p). Below spo the G H  rule with ~c = 3 has stable 
periodic objects; above spo it does not. (We defer until 
Section 10 a discussion of how this cutoff is evaluated.) 

�9 boot(p). Below boot any lattice half-plane of excitation 
(ls)  advances for at least one update; above boot excitable 
CA dynamics are convex-confined. 

Table 1 shows empirically derived values of these five 
cutoffs for p = nD and p = n B ,  1 ---n < 6. We invite the 
reader to confirm our findings using EXCITE[ 

Having tabulated the cutoff values, we proceed to sum- 
marize their implications for the ergodic behavior of ex- 
citable CA rules started from random initial states. To 
keep matters as simple as possible, let us assume for now 
that the number of  colors tc is fairly large. Just how large 
is not clear, but at the very least let x-> 5. We have 
already seen that three- and four-color rules exhibit vari- 
ous idiosyncratic phenomena; those cases will be ad- 
dressed in Section 10. It would also simplify matters if one 
knew that SPOs like Pritikin's bow tie and butterfly did 
not exist. For  given p and 0, we conjecture that such 
organizing centers with complex architecture cannot occur 
once ~c is big enough. A rigorous result to this effect in the 
context of  one-dimensional excitable systems has been 
obtained recently by Fisch and Gravner (to appear). It is 
quite clear that naive computer modeling will never ad- 
dress the existence of exotic SPOs. Rather, a theory based 
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Table 1. Cutoffs 

p Diamond Box 

bend(p) 
1 112 112 
2 213 415 
3 415 718 
4 617 12113 
5 9110 18119 
6 12113 26127 

1 112 
2 213 
3 415;516 
4 718 
5 10111; 11112 

6 14115;15116 

bug(p); ball(p) 

spo3(p) 

213 
415 
8]9; 9110 
13114;14115 
20121; 21122 
27128;29130 

1 112 213 
2 314 516 
3 516 1011! 
4 819 16117 
5 12113 23124 
6 16117 31132 

boot(p) 
p2lp2q- 1 p(2p + 1) Ip(2 p + 1) + 1 

on combinatorial principles is needed; the current work of 
Fisch and Gravner is a first step in that direction. 

First, let us consider the GH phase portrait. Our exper- 
imental conclusions for large x are summarized thus: 

~, is locally periodic if and only if 0 < bend(p) 

dies weakly or clusters if and only if 
bend(p) < 0 < ball(p) 

dies strongly if and only if 0 > ball(p) 

(9) 

Recall that these asymptotic behaviors, except clustering, 
were defined in Section 4. Each regime of Property 9 
requires discussion. Our identification of the locally peri- 
odic regime is based on three bold claims: 

�9 GH rules die weakly for large tr unless their 
wave fronts can reproduce by bending. 

�9 I f a  wave front can bend in on itself, then the (10) 
rule has SPOs. 

�9 If a rule has SPOs, then the system is locally 
periodic. 

The first claim is borne out by computer experiments, and 
seems 'physical', but we do not know a more compelling 
justification. The second claim is based on the principle 

that easily bending wave fronts make ram's horns, and the 
centers of perfect ram's horns are SPOs. We verified this 
principle in one very amusing engineering feat. The goal 
was to produce an SPO for the macaroni-type rule 
(3B, 7, 5). We discovered that a band test with the given 
threshold and range, but with 30 colors, wrapped in on 
itself quite tightly and came very close to making a period 
of 30 ram's horn. The period of a site would fluctuate 
unpredictably but remain close to minimal. After two or 
three hours of EXCITE! time, quite unexpectedly, the cen- 
ters of the ram's horns locked into a perfect period 30 
cycle. Upon closer inspection each center contained an 
SPO. Recoloring mod 5, we had achieved our goal. As a 
reward we were able to paste our object in (3B, 7, 5) and 
watch it attack the macaroni. The third claim is based on 
our empirical observation that SPOs 'enslave' everything 
in their environment except terrain already enslaved by 
another SPO. That is to say, demon growth in 0 = 1 
excitable CA rules generalized as SPO growth for 0 > 1. 
This property can be proved in a few special cases, but 
there are difficult problems concerning the manner in 
which SPOs spread when 0 is large. Our claims include a 
conjecture that makes no reference to dynamics: A 
(p, 0, x)-SPO exists for large x if and only if 0 < bend(p). 

In the second regime of Property 9, weak death of the 
infinite system means that for each x ~ 7/2, 

P(~t (x) = 0) ---> 1 as t ~ ~ ,  

but P(r = 1 for arbitrarily large t) = 1 (11) 

Between bend and bug the system supports wave fragments 
that annihilate upon collision but are otherwise capable of 
traveling indefinitely, perhaps growing all the while. In 
some cases only fragments with carefully arranged ends can 
survive and the ends caused by typical interactions are 
vulnerable. These models should satisfy property (11) since 
a few stable bugs will survive long enough to visit x after 
any prescribed time. We suspect that rules (1 B, 2, x) are of 

Plate A. Ram's horns generate octagonal waves 
(GH, p=2B,  O=3, x = 8 )  

Plate B. Three SPOs planted in the random initial state of GH, 
p = 2B, O =4, x = 5  

Plate C. Bugs and SPOs generated by clocks 
(GH, p = IB, 0=2 ,  x = 4 )  

Plate D. Clustering from an engineered initial state of GH, 
p=3B,  0=8 ,  x = 5  

Plate E. Nucleation and spiral formation in the basic CCA 
(p= lD,  0=1 ,  x=16) 

Plate F. An instance of fluid turbulence 
(CCA, p = 2B, 0=5,  x=8)  

Plate G. Fixation of a CCA in the bootstrap regime 
Go=2D, 0=5,  x=3)  

Plate H. Perfect spirals pop up within a metastable phase 
(CCA, p = IB, 0=3 ,  ~=4)  
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this variety for ~c sufficiently large. Another more exotic 
possibility, suggested by rule (3B, 8, 5) for instance, occurs 
when typical wave fragments grow at their ends. In this 
situation annihilation seems to induce increasing align- 
ment of parades of 'worms' traveling in the same direc- 
tion. Aligned worms also seem to be able to join at their 
ends and repair internal disturbances. The background 
state of Plate B, left on its own, exhibits this clustering 
behavior on the computer screen as time goes on even 
though that rule admits very rare SPOs. To illustrate the 
same phenomenon in rule (3B, 8, 5) required some in- 
vasive engineering since viable bugs are too rare to appear 
on the screen. Plate D was achieved by planting a smatter- 
ing of suitable bands with random orientations on a 
background of all 0s. Although more experiments with 
very large arrays are needed, we suspect that alignment 
occurs on arbitrary length scales in this situation. Thus we 
conjecture that there is a qualitatively distinct clustering 
phase for some GH rules between bend and bug. At 
present our findings are so speculative that we will not 
even formulate a mathematical characterization of worm 
clustering, although we feel confident that such a formula- 
tion is possible. There are various simpler CA prototypes 
that exhibit large-scale clustered alignment. In a system we 
call linebugs, for instance, individual horizontal and verti- 
cal line segments move in random directions orthogonal to 
their orientations while growing on their ends and annihi- 
lating their overlap. Much larger configurations akin to 
Plate D are obtained. 

The ergodic behavior of GH rules between bug and ball 
is virtually impossible to glean from computer visualiza- 
tion. In this regime wave fragments die out quickly so the 
graphics screen gives the impression of strong death. But 
we have already seen that certain large rings with the right 
shape can spread forever in a sea of 0s. Moreover, annihi- 
lating interaction causes two such rings to join when they 
interact. Thus, after a transient period in which virtually 
all fragments disappear, ~t should be governed by its ring 
dynamics. Observe that all nested rings of arbitrary multi- 
plicities are preserved; these astronomically rare structures 
excite each site of the lattice at arbitrarily large times. (For 
rigorous results on ring dynamics of GH rules started 
from configurations of 0s and ls, and for a proof of weak 
death for a 'synchronized' GH prototype with nested 
rings, see Gravner, 1991.) 

Finally, the experiments indicate that 4, dies out 
strongly above ball--in the sense of display (2 ) - - and  
we can conceive of no mechanism preventing rapid 
convergence to all 0s. However, we do not yet know 
a rigorous argument that improves display (2) substan- 
tially (for instance, a proof of strong death for some 
0 < boot). 

We now turn to a description of the CCA phase por- 
trait. Our experimental findings for large ~ are summa- 
rized thus: 

it is locally periodic if and only if 0 < bend(p) 
is turbulent if and only if (12) 

bend(p) < 0 < boot(p) 
fixates if and only if 0 > boot(p) 

Again, we will discuss the regimes of display (12) in order. 
Motivation for the locally periodic regime is very much 
the same as for display (10), except that the first claim 
should be replaced by: 

�9 CCA rules can only make stable spiral centers for 
large x if their wave fronts can bend completely, or if 
they belong to the multistrand family (1 B, 2, x > 6). 

Of course, exceptional multistrand structures such as the 
one shown in Fig. 6 raise the specter of similar anomalies 
for larger p. We can only report that, after extensive 
engineering, we have not managed to find any. 

So what happens to CCA rules above bend? Judging from 
a great many experiments with large arrays, there appears to 
be a new 'fluid' phase between bend and boot that we call 
turbulence. (This name is only suggestive; we do not claim 
any connection to classical turbulent dynamics.) Represen- 
tative examples are (2D, 4, 5) and (2B, 5, 8), the latter 
shown in Plate F. Roughly speaking, ~t tries to make stable 
spiral centers but, as indicated by the loop test, these 
would-be centers are unstable. As a result, when vortices 
unravel they leave behind a smattering of debris that can act 
as a seed for the formation of new wave fronts. This debris is 
a permanent and crucial part of the dynamics, more like the 
fine-grained structure in the cyclic particle system (Griffeath, 
1988) than the remnants of initial noise described in Fisch et 
al. (1991a) or in Section 10 of this paper. The turbulent fluid 
phase is characterized by very large length scales so even rule 
(2B, 5, 8) typically fixates on a 256 x 256 (CAM) array, due 
to finite-lattice effects. But CAM scooping indicates that the 
same rule on a 512 • 512 array has stable steady-state 
behavior. As in the case of worm clustering, we think it is 
premature to propose a precise mathematical formulation of 
turbulence. Suff• it to say that this regime entails a 
remarkably exotic self-organized equilibrium (stationary 
distribution) not concentrated on periodic orbits. 

Once the threshold exceeds boot, ~t seems to fixate for any 
x > 3. Plate G shows the final fixated state in a representative 
three-color case. Result (4) comes close to proving fixation 
above boot for p and x large. A nice prototype for more 
in-depth analysis is the family of CCA rules (1D, 2, x > 3). 
Perhaps it is possible to prove fixation in this case for 
sufficiently large, but the three-color situation is surely very 
delicate. Indeed, the name boot comes from bootstrap 
percolation, one variant of which is the (1D, 2, 3) CCA 
starting from only 0s and a random configuration with a 
small density p of Is. That process, arguably the simplest 
prototype for metastability effects, is known not to fixate on 
the infinite lattice for any positive p, no matter how small 
(see, for example, Aizenman and Lebowitz, 1988). 
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n = 3  

n = 4  

n > 5  

O: bend(p) bug;ball(p) 
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gives rise to local periodicity. 

{(1B,2,4), (4D,7,4), (4B,7,8)} 
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Dies out strongly. 

{(1D,2,3), (1B,3,3)} 

Fig. 7. Greenberg-Hastings models phase portrait 

~ = 3  

n = 4  

n > 5  

O: bend(p) bug;ball(p) 

n-periodic debris 

gives rise to local periodicity. 

{(1B,2#I), {4D,7,4), (4B,7,8)} 

spo3(P) boot(p) 

? 
Local periodic 

equilibrium 

of spirals. 

{(1B,3,3), (1B,3,4)} 

LocM periodic 

equifibrium of 

spirals; meta- 

stable quasi- 

periodicity 

near bend. 

{(2B,3,8), 

(1B,2,6)} 

Turbulence due to mxstable centers, 

except in small ~ locally periodic cases 
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Fig. 8. Cyclic models phase portrait 

Our empirical appraisals of the phase portraits for GH 
and CCA dynamics are summarized in Figs. 7 and 8. The 
periodic debris regime, its boundary, and ~c -- 3, 4, will be 
discussed in Section 10. 

9. Threshold-range scaling 

Our numerical values for p < 6 reveal an intriguing 
threshold-range scaling. The data suggest that bend(p)/p 2 

converges to a limit as p--+ 0% and similarly for all the 
other cutoffs. Consequently the behavior of any G H  or 
CCA rule is effectively determined by the ratio 2 = O/p 2, 
at least for tr sufficiently large. Even models with the 
smallest threshold and range are remarkably consistent 
with the asymptotic picture. 

There is a simple explanation for the scaling that is of 
fundamental significance for the theory of  excitable cellu- 
lar automata. Let us consider the case of  GH rules on box 
neighborhoods to be concrete. Then, once a rule has 
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self-organized to a length scale of order p and consists 
of reasonably coherent waves, in order to update by 
contact site x asks the question: Is at least a proportion 
O/(2p + 1) 2 - 2/4 of my neighbor set excited? Rescaling in 
the manner of Riemann, so that JVp(X) corresponds to the 
Euclidean neighbor set ~4r 1 (x) in the limit as p ~ 0% we 
obtain a limiting function form of contact updating in 
which x asks the question: "' 

Is [JV'l(X ) c~ {excited points y}] > 2? (13) 

Here IAI denotes the area (Lesbesgue measure) of Eu- 
clidean set A. In other words, for each 2 ~ (0, 4) there is a 
corresponding GH dynamic defined on 'nice' colorings in 
R 2 with x colors. Any point with color 0 changes to 1 if 
and only if the answer to Question 13 is 'yes'; all remain- 
ing colors update automatically. An analogous continuous 
space version of the CCA rule can also be defined. More- 
over, the dynamics of lattice systems starting from orga- 
nized lattice configurations of length scale p are well 
approximated by the dynamics of the continuous space 
rule started from a corresponding continuous initial state. 
To understand the observed consistent scaling behavior 
for small parameter values, note that contact updating 
with p = 4B involves averaging over 80 neighbors; it is not 
so surprising that the Riemann sum with 80 terms agrees 
fairly well with the limiting integral. 

The Euclidean rules have a number of mathematical 
advantages. Smooth wave fronts are preserved by the 
dynamics, so certain integral equations can be used to 
study key aspects of wave propagation such as the evolu- 
tion of rings and bugs. Whereas lattice rules are subject to 
'Diophantine' complexities, the threshold-range limit is 
surprisingly amenable to exact calculations. In addition, if 
we use an 12-neighborhood for our rules on R 2, then the 
models are isotropic. In particular the asymptotic shapes 
of spirals and rings are precisely circular, a desirable 
property according to Markus et al. (1991). In fact, we 
suspect that the recipe for isotropy proposed by Markus et 
al. (1991) is a complicated version of 12-ball threshold- 
range scaling. 

Unfortunately if one wants to visualize continuous 
space dynamics, the most computationally efficient 
method is presumably to approximate by a CA with large 
p and 0. And one must also come to grips with the 
mysterious transition from initial randomness to waves, 
the topic of our next section. 

10. The plot thickens 

Upon closer inspection, the phase diagrams for GH and 
CCA rules are more complicated than the simplified de- 
scription of Section 8. Let us now mention several anoma- 
lies that arise because the threshold is very low, or the 
number of colors is very small, or the finite lattice approx- 
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imation (for example, the graphics screen) is almost too 
small to handle the number of colors. 

10.1. Periodic debris 

If 0 is quite small compared to p and ~ is not too big, then 
SPOs will abound in the initial random configuration for 
statisr reasons. Durrett ( 1991) has observed that the limi- 
ting cutoff for this effect under threshold-range scaling is 

0 "~ 2p2/1r (14) 

In analogous interacting random models of either GH or 
CCA type, he proves that systems below this point have a 
stationary distribution which is asymptotically a product 
measure as p ~ oo. Experiments indicate that for 0 just 
above 2p2/~c, random GH dynamics still have equilibria 
with short range correlations but the 'stochastic spiral' 
random CCA equilibria exhibit large-scale self-organiza- 
tion. In the cyclic case, at least, it appears that the 
asymptotic critical value has been identified precisely. For 
our excitable CA models one can prove local periodicity if 
0 < (2 - e)pZ/tr and p is sufficiently large (E > 0 arbitrary). 
The basic idea is that very large SPOs will be found in the 
initial state due to large deviation considerations, that this 
SPO region will percolate and have only bounded clusters 
in its complement, and finally that the dynamics will 'fill in 
the holes'. This regime is characterized by a (rather boring) 
locally periodic limiting state of ~c-periodic debris that is 
almost indistinguishable from random noise. Just above the 
cutoff of display (14), however, the deterministic systems 
seem to behave differently than the random ones. There is 
a curious percolation transition from the debris phase to the 
self-organized phase in which first debris predominates but 
pockets of wave activity are formed, and then for slightly 
higher 0 the waves predominate but there are pockets of 
residual debris. The phase diagrams in Section 8 list 
interesting rules with mixed phases for both GH and CCA. 
As a rough empirical rule of thumb, substantial pockets of 
residual debris finally disappear once 0 > 3p2/~, although 
we do not claim that this value is exact in any  sense. The 
'chasms' in our phase pictures are meant to indicate the 
percolation transition, an effect that is not at all well 
understood and warrants further investigation. 

10.2. Three-color phenomena 

We conjecture that GH rules with ~r = 3 undergo a direct 
transition from periodic debris to strong death at a cutoff 
spo3(p) ~ 2p2/3, in accordance with display (14). The name 
comes from the fact that SPOs abound below this cutoff, 
and our belief that they do not exist (for x = 3, and hence 
for any ~:) above it. The numerical data on spo 3 for p -< 6 
are derived by starting a large finite GH system from 
three-color noise with free ( = all 0s) boundary conditions. 
If locally periodic pockets of excitation survive, then these 
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pockets contain SPO's and the rule is below the cutoff. If  
the large array dies out then 0 exceeds spo3. Of course, this 
last claim is suspect if the only stable period objects are 
statistically very rare. But in three-color excitable CA rules 
there seems to be a sharp transition, so we have reason to 
hope that our numbers are accurate. 

CCA rules with x = 3 make periodic debris for 0 < spo3 
and seem to have locally periodic limits consisting of very 
large spirals for 0 between spo3 and boot, as suggested by 
the loop test. But we do not yet understand the detailed 
characteristics of the spirals, and have doubts about their 
stability for 0 near bend. The very intriguing CCA rule 
(2B, 10, 3) even seems to cluster like some GH bug exam- 
ples, and may indicate yet another phase. CAM real-time 
dynamics for this rule exhibit a nice surface tension effect 
so we sometimes call it the 'lava light' example. 

10.3. Four-color phenomena 

Four-color GH rules make periodic debris for 0 < p2/2 by 
display (14). The percolation transition seems to last pre- 
cisely to bug; there is a strange effect whereby bugs 
emanating from debris pockets can stabilize the system 
even though the residual debris does not contain SPOs. 
Above bug ~t dies out (weakly up to ball, and then 
strongly), unless, of course, there are SPOs with strange 
architecture. 

CCA rules with ~c = 4 make nice spirals with period nx 
for some n > 1. In the (1B, 2, 4) case these spirals can 
dominate a large array for a long time before a structure, 
such as structure 8b, is suddenly created by the dynamics; 
then, quite rapidly, the spatial structure of the locally 
periodicity state changes completely as spirals are over- 
taken by SPOs. Another fascinating CCA rule is (1B, 3, 4), 
shown in Plate H. While most spirals that organize their 
environment contain occasional 'glitches', as they work 
their way around particularly troublesome boundary con- 
ditions, this and other four-color systems below boot 
always manage to make very large perfect spirals. This 
ability to organize without any 'errors' whatsoever seems 
well worth further study. 

10.4. Metastability and nucleation effects 

Near the cutoffs of the phase diagrams computer visual- 
ization can also be very misleading. Due to metastability, 
dynamics on large finite arrays may indicate that the 
corresponding infinite system belongs to the regime on the 
other side of the phase boundary. We have mentioned that 
GH macaroni-type rules may appear to cluster when they 
are, in fact, locally periodic. Similarly, CCA rules may 
seem turbulent when they are locally periodic, or to fixate 
when they belong to the turbulent fluid phase. 

Finally, for any model with p and 0 values capable of 
sustaining wave activity, the distance between regions of 

initial random noise that contain the 'right stuff' for 
self-organization increases very rapidly, with x. GH mod- 
els die out virtually everywhere, but widely separated 
clusters of excitation are then free to spread. CCA models 
fixate except for very rare wave droplets that manage to 
feed off their boundaries as they grow. These phenomena 
are instances of nucleation. 

11. Rigorous results 

For the most part, our methodology in this overview of 
excitable cellular automata has been empirical, relying on 
computer experiments, heuristics and intuition as much as 
precise deductive reasoning. We feel that the complex 
phenomenology under discussion warrants and indeed ne- 
cessitates such an experimental approach. However, as 
mathematicians, we are also motivated by a sense that the 
theory of excitable CA rules constitutes a fertile terrain for 
rigorous results, that is, substantive theorems with illumi- 
nating proofs. Let us mention briefly some ongoing math- 
ematical research and promising directions for additional 
work. Already underway are three projects that deal with 
GH and CCA rules on Z2; 

1. Nucleation scaling. For fixed p and 0 in the locally 
periodic regime, and for x large, how far apart are the 
supercritical regions of initial wave activity that give rise to 
spirals? Closely related are the questions how large a finite 
(L x L) system we need to ensure that GH does not die out 
or that CCA does not fixate. In Fisch et al. (1991b) 
nucleation of the basic GH models (p = 1D, 0 --- 1, x ~ or) 
is studied. Using percolation ideas, it is proven that defects 
are formed from a random initial state on a scale that grows 
exponentially with x, and the constant in the exponent is 
rigorously determined within a factor of 2. Some partial 
results for the analogous CCA problem will be found in 
Gravner (1991a); an exponential lower bound is proved 
there, but an analysis of droplet growth suggests that the 
scaling is in fact super-exponential. 

2. Existence and evaluation of critical values. In joint 
work with R. Durrett, one of us (DG) will attempt to 
formulate rigorous definitions of limiting threshold-range 
scaling cutoffs, to compute as many of the cutoffs as 
possible, and to derive good numerical bounds for those 
that defy exact evaluation. We expect that some of the 
engineering principles described here will prove useful for 
both the proofs and the numerics. 

3. Asymptotic shapes. Two of us (JG, DG), with under- 
graduate assistant D. Perry, will study the geometry of 
rings, ram's horns and spirals in the threshold-range limit. 
Asymptotic shapes can be computed exactly as a duality 
transform applied to an explicit Width function. We will 
also try to characterize the polygonal shapes that arise for 
prescribed values of p and 0. 
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Two other large classes of rules exhibit ergodic behavior 
with intriguing connections to GH and CCA: 

1. Two-color models. Two-color analogs of  GH and 
CCA are called the threshold contact automaton and the 
threshold voter automaton, respectively (cf. Durrett, 1991). 
Interesting open problems abound. 

2. Random excitable systems. A systematic overview of 
random excitable systems-- the stochastic counterparts of 
G H  and CCA rules, and various generalizations--would 
require another paper at least as lengthy as this one. The 
cyclic particle system in several dimensions (Griffeath, 
1988) clearly indicates that large-scale self-organization is 
possible even in the presence of noisy dynamics. Pioneer- 
ing papers such as Mollison and Kuulasmaa (1985), Dur- 
rett (1991) and Durrett  and Neuhauser (1991) give a first 
glimpse of other exotic ergodic behaviors. Whereas SPOs 
are unstable under random perturbations, many of the 
phenomena described in this paper should have stochastic 
counterparts. For instance, we have seen 'noisy ram's 
horns' in certain random G H  equilibria, and we would not 
be surprised if clustering of aligned random worms were 
also possible. Perhaps our present work can serve as a 
useful template for future research in this exciting new 
area of stochastic processes. 
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A p p e n d i x  

For R = l , 2  . . . . .  let W x = { y : t l Y - x l l ~ - < p } ,  De= 
{y z=: I1= -< R}, ODe = {y Z2: R </lyll= --- R + 1}. 

Proposition. If  x e ODe, and R is large, then 

(p -- 1)(2p + 1) <- # (JV x n D R )  <- 2p(p + 1) 

Proof. Let us abbreviate II N2 as II l[ throughout. Given 
y r W  x, s e t y = x + v  (v~JV'o); then 

[lyl[ 2-/Ixll2 = 2(x "v) + I1 112 

Thus a necessary condition for y e De is x . v  < 0. By 
symmetry, the number of  v e ~ o  that satisfy this inequal- 
ity is at most �89 + 1) 2 - 1) = 2p(p + 1). So the upper 
bound of the Proposition holds. Corresponding sufficient 
conditions to ensure tha t  y e De are 

x "v < - ( 1  +e)R (A1) 

and 

I[v ]l 2 < 2eR -- 1 (A2) 

for a suitably chosen e > 0. Note that inequality (A2) 
holds provided R is sufficiently large; for example, if 

3p 2 
R > - -  

2e 

Dividing Inequality A1 through by HxH, it therefore 
suffices to obtain a lower bound on 

n =  inf # { V E Y o : U . V - < - ( l + e ) }  
u: IP<r = 1 

For the infimal u, consider the lines in N2 given by 
f o = { z : u . z = O } ,  # l = { Z : U . Z = - ( l + E ) } ,  and the re- 
gions N = { z : u . z <  - ( 1  + e)}, 5~ = { z : - ( 1  + Q <  
u . z < 0 } ,  5 r  Then n = #  
(XoC~N). Denote n 0 = # ( , / V 0 c ~ 0 ) ,  n , =  #(o/Vomd).  
Observe that f0 is a line through the origin orthogonal 
tou, whereas f l  is a line parallel to fo and separated by 
distance (1 + e). Symmetry dictates that 

n + n ,  = �89 + 1 ) 2 -  n0) 

so it suffices to obtain an upper bound on n , .  To this 
end, we consider the contribution to n ,  from each 
'horizontal' slice of  JVo, that is, each section with fixed 
second coordinate. Since the width of the strip d in the 
horizontal direction is at most ( l + e ) x / 2 ,  choosing 
E = �8 8  ensures that each slice of JV 0 intersects 
J w g 0 u d '  in at most three lattice points. Let nl 
be the number of such slices with no neighbors v on #0 
and exactly one v in 5 e. Let n2 be the number of  such 
slices with no v on #o and two in 5 Q. Note that if a slice 
has a neighbor on Eo then it must have exactly one v in 
d .  Evidently 

n , = n  0 + n  1+2n2 and n o + n l + n 2 = 2 p + l  

Finally, by symmetry of d and d ' ,  if a slice has two 
neighbors in d then the same slice has one neighbor in 
d ' ,  and hence the corresponding slice of opposite sign 
has only one v in d .  Thus n2 -< n~. We conclude that 

n = �89 + 1) 2 - no) - n ,  

3 = �89 + 1) 2 -- no) - no g(nl + n2) + �89 -- n2) 

> �89 + 1) 2 -- no) -- no -- 3(2p + I -- no) 

= (2p + 1)(p + 1) 

as desired. Our choice of  e guarantees inequality (A2) for 
R > 30p 2. [] 


