
Lua for TerraME: A Short Introduction

Vesion 0.2, August 16, 2010

This tutorial a rather simplified collection of some freely available material on Lua language.

It is based mainly on the book “Programming in Lua” (1st edition) and on Lua’s webpage

(lua.org), being adapted for those that already have some programming background and

need to learn Lua in order to start developing models in TerraME. Because this tutorial has

almost no originality in its content, instead of citing it, please use its original sources.

Lua1 is a powerful, fast, lightweight, embeddable scripting language. It combines simple

procedural syntax with powerful data description constructs based on associative arrays

and extensible semantics. Lua is dynamically typed, runs by interpreting bytecode for a

register-based virtual machine, and has automatic memory management with incremental

garbage collection. Some properties that make Lua recommendable amongst all other

scripting languages are:

Robust: Lua has been used in many industrial applications, with an emphasis on

embedded systems and games. It is currently the leading scripting language in

games. Lua has a solid reference manual and there are several books about it.

Fast: Lua has a deserved reputation for performance. To claim to be "as fast as Lua" is an

aspiration of other scripting languages. Several benchmarks show Lua as the fastest

language in the realm of interpreted scripting languages. It is fast not only in fine-

tuned benchmarks, but a substantial fraction of large applications has been written

in Lua.

Portable: Lua is distributed in a small package and builds out-of-the-box in all platforms

that have an ANSI/ISO C compiler. Lua runs on all flavours of Unix and Windows,

and also on mobile devices and embedded microprocessors.

Embeddable: Lua is a fast language engine with small footprint that you can embed easily

into other applications. Lua has a simple and well documented API that allows

strong integration with code written in other languages.

Powerful (but simple): Lua provides meta-mechanisms for implementing features,

instead of having a host of features directly in the language. For example, although it

is not purely object-oriented, Lua provides meta-mechanisms to implement classes

and inheritance.

Small: The tarball for Lua 5.1.4 takes 860K uncompressed. The source contains around

17000 lines of C. Under Linux, the interpreter takes 153K and the library, 203K.

Free: Lua is free software, distributed under a very liberal license (the well-known MIT

license). It can be used for any purpose at absolutely no cost.

1Lua (pronounced LOO-AH) means "Moon" in Portuguese. As such, it is neither an acronym nor an

abbreviation, but a noun. More specifically, "Lua" is a name, the name of the Earth's moon and the name of the

language. Like most names, it should be written in lower case with an initial capital, that is, "Lua". Please do

not write it as "LUA", which is both ugly and confusing, because then it becomes an acronym with different

meanings for different people. So, please, write "Lua" right! (Source: http://www.lua.org/about.html)

New Moon, Different Day

Lua has a conventional sintax, having lots of similarities with other languages. Lua is case

sensitive, meaning that x and X are different variables. Each piece of code Lua executes is a

chunk. More specifically, a chunk is a sequence of statements. A semicolon may optionally

follow any statement. Usually, I use semicolons only to separate two or more statements

written in the same line, but this is just a convention. Line breaks play no role in Lua's

syntax; for instance, the following chunks are valid and equivalent:

a = 1

b = a*2

a = 1; b = a*2

a = 1 b = a*2 -- ugly, but valid

Variables have no predefined types; any variable may contain values of any type. Also,

there are no type definitions in Lua; each value carries its own type. This tutorial

introduces six basic types of Lua: nil, boolean, number, string, table, and function. The

type function gives the type name of a given value:

print(type(c)) --> nil (‘c’ is not initialized)

c = 10

print(type(c)) --> number

print(type(c > 2)) --> boolean

print(type("a string!!")) --> string

print(type(print)) --> function

nil: a type with a single value, nil, whose main property is to be different from any other

value, representing the absence of a useful value. A variable has a nil value by

default, before a first assignment, and you can assign nil to a variable to delete it.

boolean: a type with the two traditional boolean values, false and true. However, they do

not hold a monopoly of condition values: In Lua, any value may represent a

condition. Conditionals consider false and nil as false and anything else as true.

Beware: Lua considers both zero and the empty string as true in conditional tests.

There are three logical operators for working with condition values: and, or, and

not. Both and and or use short-cut evaluation, evaluating their second operand only

when necessary. The operator and returns its first argument if it is false; otherwise,

it returns its second argument. The operator or returns its first argument if it is not

false; otherwise, it returns its second argument.

print(4 and 5) --> 5

print(nil and 13) --> nil

print(4 or 5) --> 4

print(false or 5) --> 5

number: a real (double-precision floating-point) number. Lua has no integer type, as it

does not need it. There is a misconception about floating-point arithmetic errors and

some people fear that even a simple increment can go weird with floating-point

numbers. The fact is that, when you use a double to represent an integer, there is no

rounding error at all (unless the number is greater than 10^14). Specifically, a Lua

number can represent any long integer without rounding problems. Moreover, most

modern CPUs do floating-point arithmetic at least as fast as integer arithmetic.

Besides the traditional arithmetic operators (+, –, *, /), Lua provides the exponent

(^) and the modulo (%) operators for working with number values.

string: a sequence of immutable characters. You cannot change a character inside a string;

instead, you create a new string with the desired modifications. We can delimit

literal strings by matching single or double quotes. As a matter of style, you should

use always the same kind of quotes in a program, unless the string itself has quotes;

then you use the other quote, or escape those quotes with backslashes. Strings can

contain escape sequences such as \n, \t, \\, and \”. We can concatenate strings by

using the operator ".." (two dots). If any of its operands is a number, Lua converts

that number to a string.

print("Hello " .. "World") --> Hello World

print(0 .. 1) --> 01

Lua also has the traditional relational operators (<, >, <=, >=, ~=, and ==). They compare

numbers, strings and booleans by their values. However, tables and functions (to be

presented in the next sections) are compared by reference, that is, two such values are

considered equal if and only if they are the very same object.

Operator precedence in Lua follows the table below, from the higher to the lower priority:

^

not – (unary)

* / %

+ –

.. (two dots)

< > <= >= ~= ==

and

or

Based on this, the following expressions on the left are equivalent to those on the right:

a+-i < b/2+1 <--> (a+(-i)) < ((b/2)+1)

5+x^2*8 <--> 5+((x^2)*8)

a < y and y <= z <--> (a < y) and (y <= z)

–x^y^z <--> –(x^(y^z))

When in doubt, always use explicit parentheses. It is easier than looking up in the manual

and probably you will have the same doubt when you read the code again.

A comment starts anywhere with a double hyphen (--) and runs until the end of the line.

Block comments start with --[[and run until the corresponding]]. A common trick, when

we want to comment out a piece of code, is to write the following:

--[[

print(10) -- no action (comment)

--]]

Now, if we add a single hyphen in the beginning of the first line, it becomes an end-of-line

comment, and then the code is in again.

Lua provides a small and conventional set of control structures, with if for conditional and

for, while, and repeat for iteration. All control structures have an explicit terminator: end

terminates the if, for and while structures; and until terminates the repeat structure.

An if statement tests its condition and executes its then-part or its else-part accordingly.

The else-part is optional.

if a<0 then a = 0 end

if a<b then a = 5 else a = b end

When you write nested ifs, you can use elseif. It is similar to an else followed by an if, but

it avoids the need for multiple ends.

if op == "+" then r = a + b

elseif op == "–" then r = a – b

else

 error("invalid operation")

end

Iterations with while start with a test of the condition; if the condition is false, then the

loop ends; otherwise, Lua executes the body of the loop and repeats the process.

i = 1

while a[i] do

 print(a[i])

 i = i + 1

end

A repeat-until statement repeats its body until its condition is true. The test is done after

the body, so the body is always executed at least once.

repeat

 line = os.read()

until line ~= ""

print(line) -- print the first non-empty line

A numeric for has the following syntax:

for var = exp1, exp2, exp3 do

 something

end

That loop will execute something for each value of var from exp1 to exp2, using exp3 as

the step to increment var. This third expression is optional; when absent, Lua assumes one

as the step value. As typical examples of such loops, we have

for i = 1, f(x) do print(i) end

for i = 10, 1, –1 do print(i) end

All three expressions are evaluated once, before the loop starts (for example, f(x) in the

example above). You should never change the value of the control variable: The effect of

such changes is unpredictable. If you want to break a for loop before its normal

termination, use break.

The Table Type

The table type implements associative arrays, which can be indexed not only with

numbers, but also with strings or any other value of the language, except nil. Moreover,

tables have no fixed size; you can add as many elements as you want dynamically. Tables

are the main (in fact, the only) data structuring mechanism. We use tables to represent

ordinary arrays, symbol tables, sets, records, queues, and other data structures, in a

simple, uniform, and efficient way.

Tables in Lua are neither values nor variables; they are dynamically allocated objects

which contain references (or pointers) to their fields. You create tables by means of a

constructor expression, which in its simplest form is written as {}:

a = {} -- create a table and store its reference in `a'

k = "x"

a[k] = 10 -- new entry, with key="x" and value=10

a[20] = "great" -- new entry, with key=20 and value="great"

print(a["x"]) --> 10

k = 20

print(a[k]) --> "great"

a["x"] = a["x"] + 1 -- increments entry "x"

print(a["x"]) --> 11

A table is always anonymous. There is no fixed relationship between a variable that holds

a table and the table itself:

a = {}

a["x"] = 10

b = a -- `b' refers to the same table as `a'

print(b["x"]) --> 10

b["x"] = 20

print(a["x"]) --> 20

a = nil -- now only `b' still refers to the table

b = nil -- now there are no references left to the table

When a program has no references to a table left, Lua memory management will

eventually delete the table and reuse its memory.

Each table may store values with different types of indices and it grows as it needs to

accommodate new entries. For example, to represent a conventional array, you simply use

a table with integer keys. There is no way to declare its size; you just initialize the

elements as you need:

a = {} -- empty table

for i=1,1000 do a[i] = i*2 end -- create 1000 new entries

print(a[9]) --> 18

a["x"] = 10

print(a["x"]) --> 10

print(a["y"]) --> nil

Notice the last line: table fields evaluate to nil if they are not initialized. Also like variables,

you can assign nil to a table field to delete it. Since you can index a table with any value,

you can start the indices of an array with any number that pleases you. However, it is

customary in Lua to start arrays with one.

To simplify the access to table records, Lua provides a.name as syntactic sugar for

a["name"]. For Lua, the two forms are equivalent and can be intermixed freely; but for a

human reader, each form may signal a different intention. So, we could write the last lines

of the previous example in a cleanlier manner:

a.x = 10 -- same as a["x"] = 10

print(a.x) -- same as print(a["x"])

print(a.y) -- same as print(a["y"])

A common mistake for beginners is to confuse a.x with a[x]. The first form represents

a["x"], that is, a table indexed by the string "x". The second form is a table indexed by the

value of the variable x. See the difference:

a = {}

x = "y"

a[x] = 10 -- put 10 in field "y"

print(a[x]) --> 10 -- value of field "y"

print(a.x) --> nil -- value of field "x" (undefined)

print(a.y) --> 10 -- value of field "y"

Because we can index a table with any type, when indexing a table we have the same

subtleties that arise in equality. Although we can index a table both with the number 0 and

with the string "0", these two values are different (according to equality) and therefore

denote different positions in a table. This way, "+1", "01", and "1" are different positions.

When in doubt about the actual types of your indices, use an explicit conversion to be sure,

because you can introduce subtle bugs in your program if you do not pay attention to it.

i = 10; j = "10"; k = "+10"

a = {}

a[i] = "one value"

a[j] = "another value"

a[k] = "yet another value"

print(a[j]) --> another value

print(a[k]) --> yet another value

print(a[tonumber(j)]) --> one value

print(a[tonumber(k)]) --> one value

Finally, we can simplify the creation of tables by specifying entries and their values

directly in the construction expression, such as:

loc = {

 cover = "forest",

 distRoad = 0.3,

 distUrban = 2

}

print(loc.cover)

loc.distRoad = loc.distRoad^2

loc.distTotal = loc.distRoad + loc.distUrban -- adding a fourth entry

loc["deforestationPot"] = 1/loc.distTotal -- adding a fifth entry

The Function Type

A function is a first-class value in Lua. It means that a function is a value with the same

rights as conventional values like numbers and strings. Functions can be stored in

variables and in tables, can be passed as arguments, and can be returned by other

functions, giving great flexibility to the language. A function can carry out a specific task

(commonly called procedure) or compute and return values. In the first case, we use a

function call as a statement; in the second case, we use it as an expression:

print(8*9, 9/8)

a = math.sin(3) + math.cos(10)

In both cases, we write a list of arguments enclosed in parentheses. If the function call has

no arguments, we must write an empty list of arguments () to indicate the call. There is a

special case to this rule: If the function has one single argument and this argument is

either a literal string or a table constructor, then the parentheses are optional:

print "Hello World" --> same as print("Hello World")

f{x=10, y=20} --> same as f({x=10, y=20})

A function definition has a conventional syntax, with a name, a list of parameters, a body

(a list of statements), and the explicit terminator end. For instance, the following code

creates a function that sums two numbers:

function add(a, b)

 return a + b

end

Because functions are first-class values, the code above is just an instance of what we call

syntactic sugar; in other words, it is just a pretty way to write

add = function(a, b)

 return a + b

end

That is, a function definition is in fact a statement that assigns a value of type function to a

variable. We can see the expression function (...) ... end as a function constructor, just as {}

is a table constructor.

Function parameters are local variables, initialized with the arguments of the function call.

It is possible to call a function with a number of arguments different from its number of

parameters. Lua adjusts the number of arguments to the number of parameters: Extra

arguments are thrown away; extra parameters get nil. For instance, if we have

function f(a, b) return a or b end

we will have the following mapping from arguments to parameters:

CALL PARAMETERS

f(3) a=3, b=nil

f(3, 4) a=3, b=4

f(3, 4, 5) a=3, b=4 (5 is discarded)

Although this behavior can lead to programming errors (easily spotted at run time), it is

also useful, especially for default arguments. For instance, consider the following function,

to increment a global counter.

function incCount(n)

 n = n or 1

 count = count + n

end

This function has 1 as its default argument; that is, the call incCount(), without arguments,

increments count by one. When you call incCount(), Lua first initializes n with nil; the or

results in its second operand; and as a result Lua assigns a default 1 to n.

An unconventional, but quite convenient, feature of Lua is that functions may return

multiple results. Several predefined functions in Lua return multiple values. An example is

the string.find function, which locates a pattern in a string. It returns two indices: the

index of the character where the pattern match starts and the one where it ends (or nil if it

cannot find the pattern). A multiple assignment allows the program to get both results:

s, e = string.find("hello Lua users", "Lua")

print(s, e) --> 7 9

To return multiple results inside of a function, we need only to list them all after the return

keyword separated by commas, in the same way we do in multiple assignament. Lua

adjusts the number of results to the circumstances of the call. When we call a function as a

statement, Lua discards all of its results. When we use a call as an expression, Lua keeps

only the first result. We get all results only when the call is the last (or the only)

expression in a list of expressions. For instance:

function foo() return 'a', 'b' end -- returns 2 results

x,y = foo() -- x='a', y='b'

x,y,z = foo() -- x='a', y='b', z=nil

x,y = foo(), 20 -- x='a', y=20

print(foo()) --> a b

print(foo(), 1) --> a 1

print(foo() .. "x") --> ax

a = {foo()} -- a = {'a', 'b'} (use "{}" to get all returned values as a table)

print((foo())) --> a (only one value by enclosing the call with an extra "()")

Functions can also be parameters to other functions. This kind of function is what we call a

higher-order function, a great source of flexibility on the language. For example, the table

library provides a function table.foreach, that applies a function to each element of a given

table. The function used as argument receives one single argument, and is called once for

each value of the table. For instance:

x={1, 3, 2, 6, 4}

table.foreach(x, function(a) -- print each value of x

 print(a)

end) -- do not forget to close the parenthesis!

table.foreach(x, print) -- a slightly different result

Mixing Functions and Tables

The parameter passing mechanism in Lua is positional: When we call a function,

arguments match parameters by their positions. The first argument gives the value to the

first parameter, and so on. Sometimes, however, it is useful to specify the arguments by

name. To illustrate this point, let us consider the function rename (from the os library),

which renames a file. Quite often, we forget which name comes first, the new or the old;

therefore, we may want to redefine this function to receive its two arguments by name:

-- invalid code

rename(old="temp.lua", new="temp1.lua")

Lua has no direct support for that syntax, but we can have the same final effect, with a

small syntax change. The idea is to pack all arguments into a table and use that table as the

only argument to the function. The special syntax that Lua provides for function calls, with

just one table constructor as argument, helps the trick:

rename{old="temp.lua", new="temp1.lua"}

Accordingly, we define rename with only one parameter and get the actual arguments

from this parameter:

function rename(arg)

 return os.rename(arg.old, arg.new)

end

This style of parameter passing is especially helpful when the function has many

parameters, and most of them are optional. This is also the way Lua allows object-oriented

programming, mainly because a table in Lua is an object in more than one sense. Like

objects, tables have a state. Like objects, tables have an identity (a selfness) that is

independent of their values; specifically, two objects (tables) with the same value are

different objects, whereas an object can have different values at different times, but it is

always the same object. Like objects, tables have a life cycle that is independent of who

created them or where they were created.

Objects have their own operations. Tables also can have operations:

loc = {cover = "forest", distRoad = 0.3, distUrban = 2}

loc.deforestPot = function()

 return 1/(loc.distRoad + loc.distUrban)

end

This definition creates a new function and stores it in the field deforestPot of the loc

object. Then, we can call it as

loc.deforestPot()

This kind of function is almost what we call a method. However, the use of the name loc

inside the function is a bad programming practice. First, this function will work only for

this particular object. Second, even for this particular object the function will work only as

long as the object is stored in that particular variable; if we change the name of this object,

deforestPot does not work any more:

a = loc; loc = nil

a. deforestPot () -- ERROR!

Such behaviour violates the previous principle that objects have independent life cycles.

A more flexible approach is to operate on the receiver of the operation. For that, we would

have to define our method with an extra parameter, which tells the method on which

object it has to operate. This parameter usually has the name self or this:

loc. deforestPot = function(self)

 return 1/(self.distRoad + self.distUrban)

end

Now, when we call the method we have to specify on which object it has to operate:

a1 = loc; loc = nil

a1. deforestPot(a1) -- OK

This use of a self parameter is a central point in any object-oriented language. Most OO

languages have this mechanism partly hidden from the programmer, so that she does not

have to declare this parameter. Lua can also hide this parameter, using the colon operator.

We can rewrite the previous method definition as

function loc:deforestPot() return 1/(self.distRoad + self.distUrban) end

and the method call as

loc:deforestPot()

The effect of the colon is to add an extra hidden parameter in a method definition and to

add an extra argument in a method call. The colon is only a syntactic facility; there is

nothing really new here. We can define a function with the dot syntax and call it with the

colon syntax, or vice-versa, as long as we handle the extra parameter correctly.

Finally, we can declare a class in Lua by creating a function that takes a table constructor

as argument. This function typically initializes, checks properties values and adds auxiliary

data structure or methods. For instance, the next example builds the type MyLoc:

function MyLoc(locdata)

 locdata.cover = locdata.cover or "forest"

 locdata.deforestationPot = function(self)

 return 1/(self.distRoad + self.distUrban)

 end

 return locdata

end

loc = MyLoc{distRoad = 0.3, distUrban = 2}

print(loc.cover)

print(loc:deforestationPot())

When loc is instantiated, the constructor initializes the attribute cover and the function

deforestationPot. TerraME includes new value types in Lua using this constructor

mechanism for building spatial dynamic models.

Annex: Some Useful Lua Functions

Function Description Example

math.sin, math.cos,

math.tan, etc.

Trigonometric functions, always working with

radians.

math.sin(2 * math.pi)

math.deg, math.rad Converts between degrees and radians. math.deg(math.pi)

math.exp, math.log,

math.log10

Exponentiation and logarithms. math.exp(1)

math.log(2.71)

math.floor,

math.ceil

Rounding functions. math.floor(2.3)

math.max, math.min The maximum (minimum) of two numbers. math.max(4, 7)

math.random Generates pseudo-random real (when called

without arguments) or integer (otherwise)

numbers.

math.random() -- [0,1)

math.random(n) -- 1<=x<=n

math.random(a,b) --a<=x<=b

math.randomseed Set a seed for the pseudo-random generator. math.randomseed(0)

math.randomseed(os.time())

string.upper,

string.lower

Upper (lower) case. string.upper("moon")

string.sub Cuts a string, from the i-th to the j-th character

inclusive. The first character of a string has

index 1. Value -1 refers to the last character, -2

to the previous one, and so on. If you do not

provide a third argument, it has default -1.

s = "[in brackets]"

string.sub(s, 4)

string.sub(s, 2, 7)

string.sub(s, 2, -2)

string.format Formats a string, with rules similar to those of

the standard C printf function.

string.format("pi = %.4f",

 math.pi)

string.gsub Replaces the occurrences of a given pattern

inside of the subject string. Returns the new

string and the number of occurrences. An

optional fourth parameter limits the number

of substitutions to be made.

string.gsub("Lua is cute",

 "cute", "great")

string.gsub("all lii", "l",

 "x", 1)

table.insert Inserts an element in a given position of an

array, moving up other elements to open

space and incrementing the size of the array.

a = {3, 7, 5}

table.insert(a, 1, 15)

table.insert(a, 3, 10)

table.remove Removes (and returns) an element from a

given position in an array, moving down other

elements. When called without a position, it

removes the last element.

a = {3, 7, 5}

table.remove(a, 1)

table.remove(a)

table.getn Returns the number of elements of a table

with a linear sequence of non-nil elements

with numeric indices starting at 1. Arrays that

do not follow this convention can produce

undefined results.

x = {3, 5}

table.getn(x)

print(#x) -- sugar

table.sort Orders the elements of a table according to an

order function, that has two arguments and

must return true if the first argument should

come first in the sorted array. This function

has the less-than operation (corresponding to

the `<´ operator) as default.

a = {3, 7, 4, 1, 2}

table.sort(a)

table.sort(a, function(v1, v2)

 return string.lower(v1) <

 string.lower(v2)

end)

tostring Converts a number to a string. tostring(12)

tonumber Converts a string to a number. tonumber("11")

Lua has many other functionalities not presented in this short tutorial. More about Lua can

be found at http://www.lua.org/pil.

