
 

Life and Death on the Sugarscape

In 
this chapter the simplest version of our artificial world is described.

A single population of agents gathers a renewable resource from its
environment . We investigate the distribution of wealth that arises
among the agents and find that it is highly skewed. It is argued that
such distributions are emergent structures. Other emergent phenomena
associated with mass agent migrations are then studied. Social networks
among neighboring agents are illustrated and their significance is
discussed. Finally, it is argued that artificial societies can serve as
laboratories for social science research.

In the Beginning There Was Sugar

Events unfold on a "sugarscape." This is simply a spatial distribution , or
topography, of "sugar," a generalized resource that agents must eat to
survive. The space is a two -dimensional coordinate grid or lattice. At
every point (x, y) on the lattice, there is both a sugar level and a sugar
capacity, the capacity being the maximum value the sugar level can take
at that point . Some points might have no sugar (a level of zero) and low
capacity, others might have no sugar but large capacity- as when agents
have just harvested all the sugar- while other sites might be rich in
sugar and near capacity.

The Sugarscape software system (that is, the computer program
proper) permits one to specify a variety of spatial distributions of levels
and capacities. But let us begin with the particular sugarscape shown in
figure ll - l , which consists of 2500 locations arranged on a 50 x 50
lattice with the sugar level at every site initially at its capacity value.

The sugar score is highest at the peaks in the northeast and southwest
quadrants of the grid- where the color is most yellow- and falls off in
a series of terraces.l The sugar scores range from some maxirnum-

 

 

 

1. Terms like Npeak" or Nmountain N are not used to suggest physical elevation, but to
denote regions of high sugar level.
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THE SUGARSCAPE

here 4- at the peaks to zero at the extreme periphery. The sugarscape
wraps around from right to left (that is, were you to walk off the screen
to the right , you would reappear at the left ) and from top to bottom,
forming a doughnut- technically, a torus.

Simple Local Rules for the Environment

In our model, autonomous agents inhabit this sugarscape and constantly 
collect and consume sugar. We therefore need to postulate a rule for

how the sugar regenerates- how it grows back after it is harvested by
the agents.

Various rules are possible.2 For instance, sugar could grow back
instantly to its capacity. Or it could grow back at a rate of one unit per
time step. Or it could grow back at different rates in different regions of
the sugarscape. Or the growback rate might be made to depend on the
sugar level of neighboring sites. We will examine several of these possibilities

. To begin, however, we stipulate that at each lattice point the
sugarscape obeys the following simple rule:
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2. The main constraint we impose on ourselves in constructing such rules throughout
this book is to make them as simple as possible. This has two main implications, one theoretical 

and one practical. Theoretically, rule simplicity suggests that the agents use only
local information. Practically, we want to be able to state a particular rule in just a few lines
of code.
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Su9;arscape 9;rowback rule G,.: At each lattice position, sugar
grows back at a rate of a units per time interval up to the capacity 

at that position.3

With the sugarscape described, we now "flesh out" what we mean by
"agents."

The Agents
Just as there is an initial distribution of sugar, there is also an initial population 

of "agents." We want to give these agents the ability to move
around the sugarscape perfonning various tasks. In this chapter they
simply gather sugar and eat it .4 In later chapters their behavioral repertoire 

expands to include sex, cultural exchange, combat, trade, disease
transmission, and so on. These actions require that each agent have
internal states and behavioral rules.5 We describe these in turn .

Agent States

Each -agent is characterized by a set of fixed and variable states. For a
particular agent, its genetic characteristics are fixed for life while its
wealth, for instance, will vary over time .

One state of each agent is its location on the sugarscape. At every time
each agent has a position given by an ordered pair (x, y) of horizontal
and vertical lattice coordinates, respectively. l \ vo agents are not allowed
to occupy the same position. Some agents are born high on the sugarscape 

near the peaks of the sugar mountains shown in figure II -1.
Others start out in the sugar "badlands" where sugar capacities are very
low. One might think of an agent's initial position as its "environmental
endowment ." We shall first investigate a random distribution of 400
agents, as shown in figure ll -2.

Each agent has a genetic endowment consisting of a sugar metabolism

3. The rule can be stated formally. Call the current resource (sugar) level r' and the
capacity c. Then the new resource level, r '+/, is given by

r'+/ = min(r'+cx,c).
4. For a similar model, see Packard's [1989] anifidal ecology.
5. As noted in Chapter I, each agent is implemented as an "object"; its internal states are

its "instance variables," while its behavioral rules are spedfied by its "methods." Technically,
the states of an agent are data while its behavioral rules are procedures (or subroutines).
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FigureD -3. Agent Vision

and a level of vision. Agents have different values for these genetic
attributes; thus the agent population is heterogeneous.6. 

The agent's metabolism is simply the amount of sugar it bums per time
step, or iteration. Metabolisms are randomly distributed across agents. For
the runs of the model described immediately below, metabolism is uni -
fonnly distributed with a minimum of 1 and a maximum of 4.

Agent vision is also randomly distributed. Agents with vision v can see
v units in the four principal lattice directions: north , south, east, and west.
Agents have no diagonal vision. This lack of diagonal vision is a form of
imperfect information and functions to bound the agents' "rationality," as
it were. The nature of agent vision is illustrated in figure ll -3. An agent
with vision 3 can look out 3 units in the principal lattice directions. In
what follows vision is initially distributed unifonnly across agents with
values ranging from 1 to 6, unless stated otherwise.

All agents are given some initial endowment of sugar, which they carry
with them as they move about the sugarscape. Sugar collected but
not eaten- what an agent gathers beyond Its metabolism- is added to
the agent's sugar holdings.' There is no limit to how much sugar an
individual agent may accumulate.

6. When the number of genetic attributes is large it may even be the case that no two
agents are genetically identical.

7. Agent holdings do not decay over time.



Simple Local Rules for the Agents

The agents are also given a movement rule. Movement rules process
local infonnation about the sugarscape and return rank orderings of the
sites according to some criterion . Such rules are called "movement
rules" since each agent moves to the site it ranks highest. As with the
sugarscape growback rule, we require that agent movement be governed 

by a simple rule .
A natural way to order the sites is by the amount of sugar present at

each site within an agent's vision. This results in the following movement 
rule, which is a kind of gradient search algorithm :

Agent movement rule M :
. Look out as far as vision pennits in the four principal lattice

directions and identify the unoccupied site(s) having the most
sugar;8

. If the greatest sugar value appears on multiple sites then
select the nearest one;9

. Move to this site;IO
. . Collect all the sugar at this new position.

Succinctly, rule M amounts to this: From all lattice positions within
one's vision, find the nearest unoccupied position of maximum sugar, go
there and collect the sugar. I I

At this point the agent's accumulated sugar wealth is incremented by the
sugar collected and decremented by the agent's metabolic rate. U at any
time the agent's sugar wealth falls to zero or below- that is, it has been
unable to accumulate enough sugar to satisfy its metabolic demands-
then we say that the agent has starved to death and it is removed from
the sugarscape. If an agent does not starve it lives forever.

8. The order in which each agent search es the four directions is random.
9. That is, if the largest sugar within an agent's vision is four, but the value occurs twice,

once at a lattice position two units away and again at a site three units away, the former
is chosen. If it appears at multiple sites the same distance away, the first site encountered
is selected (the site search order being random).

10. Notice that there is no distinction between how far an agent can move and how far
it can see. So, if vision equals 5, the agent can move up to 5 lattice positions north , south,
east, or west.

11. Since all agents follow this behavioral rule, there is a sense in which they are quite
homogeneous. However, recalling that vision is randomly distributed in the agent population

, two distinct agents placed in identical environments will not generally respond
(behave) in the same way, that is, move to the same location.
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Each agent is permit ted to move once during each anificial time period
. The order in which agents move is randomized each time period.12

Artificial Society on the Sugarscape
All the ingredients are now in hand. We have a sugarscape and an initial 

population of agents, each of whom comes into the world with an
environmental and genetic endowment, and we have simple behavioral
rules for the sugarscape and the agents. Initially there will be only one
rule for the agents and one for the sugarscape, but in subsequent chapters 

both the environment and the agents will execute multiple rules.13
50 a notation is needed to describe the rules being executed for any particular 

run of the model. Call E the set of rules that the environment
executes, and let A be the set of rules the agents follow . Then the
ordered pair (E, A ) is the complete set of rules.

For the first run of the model, the sugarscape will follow an instance
of the general rule, Ga, that we call the "immediate growback rule."

5u~arscape rule G~: Grow back to full capacity immediately.14

This rule says that no matter what the current sugar level is at a site,
replace it with that site's sugar capacity. The agents will all execute movement 

rule M . Thus the complete set of rules being executed is ({G~), (M }).
Can you guess what will happen for these rules? Will the agents all

dump together atop the sugar mountains? Will agent motion persist
indefinitely ? Actual dynamics are shown in animation II -1.15

What is striking to us is the way the agents ultimately "stick" to the

12. All results reponed here have been produced by running the model on a serial computer
; therefore only one agent is Nactive" at any instant. In principle, the model could be

run on parallel hardware, permit ting agents to move simultaneously (although M would
have to be supplemented with a conflict resolution rule to handle cases in which two or
more agents simultaneously decide to inhabit the same site). Whenever one simulates on
a serial machine process es that occur in parallel, it is important to randomize the agent
order periodically to ensure against the production of simulation artifacts [Hubennan and
Glance, 1993] .

13. Appendix B presents a summary statement of all rules used, in their most
general fOnD.

14. Under the definition of GaG~ ensures that sites grow back instantly to capadty, since
r '+1 = min (- ,c) = c.

15. Users wishing to view animations should consult the README file on the CD-ROM
for instructions.
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16. Each time the model is run under rules ({G_}, (M}), results qualitatively similar to
those of animation ll -1 are produced. However, because the initial population of agents is
random- each agent has genetics and initial location drawn from cenain probability distribution 

functions- runs made with different streams of random numbers will generally
be completely different microscopically, that is, at the level of the agents. (Distinct random
number streams are created from run to run either by using distinct seeds in a fixed random 

number generator (RNG) or by employing altogether different RNGs. A common
way to make successive random number seeds uncorrelated in consecutive runs of amod-
el is to tie them to something independent of the model such as the actual time at which
the user stans the run.) Because the search direction in rule M is stochastic, even runs
having identical populations of agents will differ at the micro-level when, for example, a
RNG is re-seeded in the course of a run. All this said, however, let us emphasize that any
panicular run of the model is completely reproducible. That is, when the sequence of
random numbers is specified ex ante the model is deterministic. Stated yet another way,
model output is invariant from run to run when all aspects of the model are kept constant,
including the stream of random numbers.

ridges of the terraced sugarscape. With immediate growback to capacity,
the agents' limited vision explains this behavior. Specifically, suppose
you are an agent with vision 2 and you are born on the terrace of sugar
height 2, just one unit south of the sugar terrace of level 3. With vision
2, you can see that the nearest maximum sugar position is on the ridge
of the sugar terrace of height 3, so, obeying rule M , you go there and
collect the sugar. Since there is instant growback, no point on the level
3 sugar terrace is an improvement; and with vision of only 2, you cannot
see the higher terrace of sugar level 4. So you stick on the ridge.

Also notice that some agents die. For those with high metabolism and
low vision, life is particularly hard. This run of the model reaches a
steady-state configuration once these unfortunates have died and the
rest have attained the best positions they can find .16 Much richer
dynamics result if we slow down the rate at which the sugarscape regenerates

, as shown in the next run of our artificial sodety.
For this second run we again take the initial population to be 400

agents arranged in a random spatial distribution . Each agent again executes 
rule M . But now let us change the sugarscape rule to GI : Every site

whose level is less than its capadty grows back at 1 unit per time
period. The complete rules are then ({GI}, {M }). The evolution is shown
in animation 11-2.

What first catches the eye in this animation is the continuous buzz of
activity; it reminds one of "hiving ." But it is both purposeful and effi-
dent . It is purposeful in that the agents concentrate their activities on
the sugar peaks. Indeed, two " colonies" seem to form, one on each
mountain . If the intervening desert (low sugar zone) between the main
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Animation 0 -2. Societal Evolution under Rules ({GI}, (M }) from a
Random Initial Distribution of Agents . ......D
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sugar mountains were widened, the spatial segregation seen here would
be even more pronounced.

The agents are also efficient grazers. Focusing your attention on a particular 
sugar location atop one of the sugar peaks, you will see that once

it attains some level near its capacity value, it is struck. Then the agent
moves away, leaving a white site. Once the site grows back, some agent
will zip over and hit it , and so it goes.

An alternative view of rule M is that it is a decentralized harvesting rule .
Specifically, imagine yourself to be the owner of the sugarscape
resources and that your goal is to harvest as much sugar as possible. You
could give each of your agents explicit instructions as to which site to
harvest at what time. Such a harvesting program could turn out to be
very complicated indeed, especially when the differential capabilities of
the agents are taken into account. But M is also a harvesting program, a
highly decentralized one.

Carrying Capacity

This simulation illustrates one of the fundamental ideas in ecology and
environmental studies- the idea of a carrying capacity: A given environment 

will not support an indefinite population of agents.17 In this case,
although 400 agents begin the simulation, a carrying capacity of approximately 

224 is eventually reached. This is revealed in the time series of
agent population given in figure II -4.

We can systematically study the dependence of the carrying capacity
on the genetic composition of the agent population . To do this one simply 

specifies particular distributions of vision and metabolism among the
agents and lets the model evolve until the asymptotic population level-
the carrying capacity- is reached. For a given set of distributions, each
run of the model will produce a somewhat different population value,
due to stochastic variations, hence, multiple runs must be performed.
Figure 11-5 gives the dependence of carrying capacity on inital mean
vision, parameterized by initial mean metabolism, <m>, starting with
500 agents.IS

As agent vision increases each agent can see more of the sugarscape
and is therefore a more efficient harvester. Similarly, as agent metabolism 

decreases, each agent finds it somewhat easier to survive.
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17. For a comprehensive and considered inquiry into the question of Earth's human
carrying capadty, see Cohen [1995J.

18. Each data point represents the mean value of 10 runs.



Figure ll -4. Time Series of Population under Rules ({GI}, (M }) from a
Random Initial Distribution of Agents; Asymptotic Approach to the
Environmental Carrying Capacity of 224
Agents

Figure 8 -5. Carrying Capacities as a Function of Mean Agent Vision ,
Parameterized by Metabolism , under Rules ({GI ), {M }) from a Random
Initial Distribution of Agents
Carrying Capacity
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Selection without Sex

In a primitive form our artificial world also illustrates a central idea of
evolutionary theory, that of selection. As mentioned above, at the outset
metabolism and vision are randomly distributed across agents, with each
varying between some minimum and maximum value. However, by the
time the carrying capacity is attained, the population is skewed in favor
of agents with low metabolism and high vision. These agents enjoy a
selective advantage over the high metabolism, low vision agents. And as
we shall see in the next chapter, when we add sexual reproduction to
the agents' behavioral repertoire , this process becomes accretive
gene rationally, producing much stronger tendencies toward agents who
are increasingly "fit ." Even without sex, selection pressures can
be substantial. In the run depicted in animation II - 2, the initial mean
vision and metabolism were 3.5 and 2.5, respectively. After 500 time
periods, selection had increased mean vision to 4.1 and reduced mean
metabolism to 1.8.

Wealth and Its Distribution in the Agent Population

All the while in our artificial world agents are accumulating wealth

(measured , of course , in sugar ). And so, at any time , there is a distribution 
of wealth in society . The topic of wealth distribution has always

interested economists . To study the distribution of wealth in our artificial 

society we need to modify the previous run in two related ways .
First , if agents are pemlitted to live forever then no stationary wealth
distribution ever obtains - the agents simply accumulate indefinitely .
Since death is indisputably a fact of life , it is only realistic to insist on
finite agent lifetimes . So we set each agent

's maximum achievable age-

beyond which it cannot live - to a random number drawn from some
interval [a,b] . Of course , agents can still die of starvation , as before .

Given that agents are to have finite lifetimes , the second modification
that must be implemented is a rule of agent replacement . One can imagine 

many such rules ; for example , a fixed number of new agents could
be added each period . However , to ensure a stationary wealth distribution 

it is desirable to use a replacement rule that produces a constant

population . The following replacement rule achieves this goal .

A ent replacement rule Rla.b]: When an agent dies it is replaced
by an agent of age 0 having random genetic attributes , random
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position on the sugarscape, random initial endowment, and a
maximum age randomly selected from the range [a,b] .

To study the actual evolution of the distribution of wealth on the sugarscape 
we place 250 agents- approximately the carrying capacity- randomly 

about the sugarscape and let them move and accumulate sugar as
before (agent movement rule M ). Replacement rule R[60. 100] is in effect. 19
Initial agent endowments are unifonnly distributed between 5 and 25.
The sugarscape grows back at unit rate (environment rule GI ). Now,
since we want to track the distribution of wealth, not the spatial distribution 

of agents, we show a histogram of wealth animated over time. In
animation 1I-3, the horizontal axis gives the range of individual wealth
in society, divided into ten "bins." The vertical axis gives the number of
agents falling into the various bins. How does the distribution evolve?

While initially quite symmetrical, the distribution ends up highly
skewed.2O Such skewed wealth distributions are produced for wide
ranges of agent and environment specifications. They seem to be characteristic 

of heterogeneous agents extracting resources from a landscape
of fixed capacity. By contrast, the distribution of income, defined as the
amount harvested per period less metabolism, is much less skewed.21

In the sciences of complexity, we would call this skewed distribution an
emergent structure, a stable macroscopic or aggregate pattern induced by
the local interaction of the agents. Since it emerged Hfrom the bottom
up," we point to it as an example of self-organization. Left to their own,
strictly local, devices the agents achieve a collective structuring of some
son. This distribution is our first example of a so-called emergent structure.

The term Hemergence H appears in cenain areas of complexity theory,
distributed anificial intelligence, and philosophy. It is used in a variety of
ways to describe situations in which the interaction of many
autonomous individual components produces some kind of coherent,
systematic behavior involving multiple agents. To our knowledge, no
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19. Note that the mean death age will be 80 when few agents die of starvation.
20. Agents having wealth above the mean frequently have both high vision and low

metabolism. In order to become one of the very wealthiest agents one must also be born
high on the sugarscape and live a long life.

21. The maximum income possible is 3, since the maximum sugar level is 4 and the
minimum metabolism is 1.



Animation B-3. Wealth Histogram Evolution under Rules ({GI), {M,
R[60,IOO]}) from a Random Initial Distribution of Agents

4 

39 39

12 15 18 21 24 27 : I )

7

3

11 22 33 44 55 66 77 88 99 110

0 20 40 60 80 100 120 140 160 la : J 200

 1:1) - . 122

28 25 18
. . . . I I . . . . .
0 27 54 81 108 135 162 189 216 243 270



completely satisfactory formal theory of II emergence" has been given.22 A
particularly loose usage of l I emergent" simply equates it with I I SUrprising"
or "unexpected," as when researchers are unprepared for the kind of systematic 

behavior that emanates from their computers.23 A less subjective
usage applies the term to group behaviors that are qualitatively different
from the behaviors of individuals composing the group.

We use the term II emergent" to denote stable macroscopic patterns arising
from the local interaction of agents. One example is the skewed wealth distribution

; here, the emergent structure is statistical in nature. There is a
qualitatively different type of emergent phenomenon that we also
observe. An example of this, described below, occurs when a wave of
agents moves collectively in a diagonal direction on the sugarscape, this
even though individual agents can move only north , south, east, or
west. That is, the group adopts a heading unavailable to any individual !
While both the highly skewed wealth distribution and the collective
wave satisfy our definition of emergence, they differ in a fundamental
respect. We know what it would mean for an individual agent to travel
on a diagonal; the local rule simply prohibits it . By contrast, we do not
know what it would mean for an individual to have a wealth distribution

; at a given time, only groups can have distributions.24
Understanding how simple local rules give rise to collective structure

is a central goal of the sciences of complexity. As we will frequently
observe, such understanding would have fundamental implications for
policy. For instance, we might be able to distinguish conditions (on
information or spatial heterogeneity, for example) conducive to the
emergence of efficient markets from conditions making their emergence
highly unlikely . We might then be better equipped to answer the following 

sort of question: Is it reasonable to base policy on the assumption
that if central authorities I Ijust get out of the way" then efficient markets
will self-organize in Russia? Clearly, implicit assumptions on seemingly

22. Interesting effons are under way, however; see Baas [ 1994] .
23. This usage obviously begs the question, "Surprising to whom ?"
24. To formalize things somewhat, let A denote an agent and C denote a collection of

agents. Let P(A) denote the proposition " A has propeny P, " and likewise for P(C). Then
there are at least two types of emergence:

1. P(A) and P(C) are both meaningful, but only P(C) is observed (for example, collective 
diagonal waves);

2. Only P(C) is meaningful and it is observed (for example, the skewed wealth distribution
).
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25. A large literature surrounds the Pareto "law." See, for example, Kirman [1990] and
Persky [1992].

26. See Steindl [1990].

abstract questions of N emergence" drive policy at fundamental levels.
Returning to the wealth distribution of animation II -3, some have

argued, espedally in the context of the so-called Pareto "law," that highly 
skewed distributions of income and wealth represent some sort of

Nnatural order," a kind of immutable Nlaw of nature."25 Artificial social
systems let us explore just how immutable such distributions are. We
can adjust local rules~ like those concerning inheritance and taxation-
and see if the same global pattern in fact emerges.

Measures of Economic Inequality: The Gini Coefficient

It is possible to fit the wealth distribution of animation II -3, or its cumulative 
distribution counterpart, to any number of empirically significant

distribution functions. Such distributions- the Pareto-Levy distribution
being perhaps the best known - are typically characterized by one or
two parameters, and it might be informative to compare the parameter
values obtained from our artificial sodety with those from real sodeties.
The point of such exerdses is to compress information on whole distributions 

into just a few parameters. This not only fadlitates comparison
with real economic data but also provides a basis for describing the
results of simulations in summary terms. For example, if rules (E, A )
yield a wealth distribution statisticS while rules (E, A ') result in S' > S,
it can unambiguously be said that changing agent rules from A to At
causesS to increase.

In particular, we are interested in summary statistics that can be interpreted 
as measures of inequity. There are a variety of ways to accomplish

this when the distribution function to be fit is spedfied. For example, the
exponent in the Pareto distribution is a measure of the inequality of the
distribution . However, its interpretation is far from unambiguous} 6 One
summary statistic relating to inequality of income or wealth is the socalled 

Gini coefficient. It has the desirable property that it does not
depend on an underlying distribution ; that is, it is a Ndistribution-free"

statistic.
The nature of the Gini coeffident or ratio is conveniently explained by

reference to the so-called Lorenz curve. This is a plot of the fraction of
total sodal wealth (or income) owned by a given poorest fraction of the
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population . Any unequal distribution of wealth produces a Lorenz curve
that lies below the 450 line- the poorest X percent of the population
controls less than X percent of the society's total wealth . The Gini ratio
is a measure of how much the Lorenz curve departs from the 450 line .
If everyone has the same amount of wealth the Gini ratio is zero, while
if a single individual owns everything then the Gini ratio is one. As the
Gini coefficient increases society becomes less egalitarian.27

To construct a Lorenz curve for wealth, one first ranks the agents from
poorest to wealthiest. Each agent's ranking determines its position along
the horizontal axis. Then, for a given agent (abscissa) an ordinate is plot -
ted having a value equal to the total wealth held by the agent and all
agents poorer than the agent. The first image in animation II -4 is a
Lorenz curve for the initial distribution of

' 
wealth on the sugarscape for

the run described in animation ll -3. When the animation is run , one
observes a monotone increase in the curvature of the Lorenz curve- it
progressively "bows" outward as inequality grows.

The animation also displays a real-time computation of the Gini coefficient
. Note that it starts out quite small (about 0.230) and ends up fairly 

large (0.503). This Gini ratio, approximately constant for long-time
evol1:1tions of the society, is much lower than that seen in industrial societies

. In subsequent chapters we shall augment the agents' rules of
behavior to include, for example, inheritance, trade, and so on. The Gini
ratios of the artificial societies that result then begin to resemble those of
developed economies.

The ability to alter agent interaction rules and noiselessly compute the
effect on the Gini ratio and other summary statistics is one of the most
powerful features of artificial societies. They are "laboratories" for the
study of social systems.

SocialNetworks

As described in Chapter I, we study various agent connection networks
in this book. The first of these will be relatively straightforward, adding
insight to the basic picture of "hiving " on the sugarscape. Specifically, we
want to keep track of each agent's "neighbors."

One might define the term "neighbor" in a variety of ways. Since our

27. For a more detailed exposition of the Lorenz curve, see Kakwani [1990]. A concise
description of the Gini ratio is Dagum [1990].
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agents live on a rectangular lattice it is natural to use the so-called von
Neumann neighborhood, defined to be the set of sites immediately to
the nonh , south, east, and west of a particular site. A von Neumann
neighborhood is depicted in figure n -6.

An alternative is the Moore neighborhood, which includes all four
sites of the von Neumann neighborhood as well as the four sites along
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Animation ll -4. Evolution of the Lorenz Curve and the Gini
Coeffident under Rules ({GI}, {M, R[60.IOO]})
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the diagonals. Thus there are eight Moore neighbors as shown in figure
11- 7.

In what follows we shall always employ the von Neumann neighborhood
.28 When an agent moves to a new position on the sugarscape it has

from zero to four neighbors. Each agent keeps track of these neighboring 
agents internally until it moves again, when it replaces its old neighbors 
with its new neighbors.

The neighbor connection network is a directed graph with agents as
the nodes and edges drawn to the agents who have been their neighbors

; it is constructed as follows. Imagine that agents are positioned on
the sugarscape and that none has moved. The first agent now executes
M , moves to a new site, and then builds a list of its von Neumann neighbors

, which it maintains until its next move. The second agent then
moves and builds its list of (post-move) neighbors. The third agent
moves and builds its list, and so on until all agents have moved. At this
point , lines are drawn from each agent to all agents on its list. The resulting 

graph- a sodal network of neighbors - is redrawn after every cycle
through the agent population .29 What is most interesting about such

LIFE AND DEATH ON THE SUGARS CAPE 39

NeighborhoodFigure ll -6. An Agent Its van

 

28. In the Sugarscape software system that produced the animations in this book and
CD-ROM, one can specify that either a von Neumann or a Moore neighborhood be used.

29. Note that agent-neighbor connections may be asymmetrical (that is, agent i is on
agent k's list but not conversely) and may extend beyond an agent's von Neumann neighborhood

. To see this, imagine that agent i moves into agent k's neighborhood and, accord-



 

graphs, or networks, is that they change over time as agents (the nodes)
move around on the sugarscape. Animation ll -5 depicts the development 

of agent connection networks under rules ({GI), {M }), the same
rules that produced animation 11-2. Note that some of the neighbor
graphs are simple, while others are elaborate webs containing cycles and
other structures. Clearly, a rich variety arises.

The connection network reveals something not visible in the earlier
animations of agents on the sugarscape. lf , for instance, message-passing
is pernlitted only between neighbors, what is the chance that a message
could make its way across the entire sugarscape? If we whisper it in the
ear of a southwestern agent, will a northeastern one ever hear it? If the
world is divided into two spatially separated and noninteracting networks

, then neighborwise communication will be limited , and information 
may be localized in a concrete sense, a phenomenon with

important implications in a number of spheres. When agent interaction
(for example, trade) occurs over such networks, the term "connection
network " seems less apt than the term "social network ."3O In essence,
the connections describe a topology of social interactions.

ingly, puts k on its list. Then, when it 's k's turn to move, it hops out of i 's neighborhood,
so when it builds itS (post-move) list, i is not on it . In the resulting graph, then, the edge
from i to k will go beyond i's neighborhood, and i will not be on k's list (asymmetry).

30. The literature on social networks is large; Scott [1992] and Kochen [1989] are good
introductions . Recent work espedally relevant to the dynamic networks presented here
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Figure B-7. An Agent and Its Moore Neighborhood

 



Evolution of Social Networks of Neighbors underAnimation 11-5.
Rules ({GI}, (M})



Migration
The skewed wealth distributions above are examples of emergent structures

. We turn now to a different kind of emergent structure, this one
spatial in nature. To "grow" it we need to give the agents a maximum
vision of ten rather than the value of six used above. Now, instead of the
random initial distribution of agents on the sugarscape used earlier, suppose 

they are initially clustered in the dense block shown in the first
frame of animation ll -6. In all other respects the agents and sugarscape
are exactly as in animation ll -2. How will this block start affect the
dynamics?

A succession of coherent waves results, a phenomenon we did not
expect. Reflecting on the local rule, however, the behavior is understandable

. Agents in the leading edge proceed to the best unoccupied
sugar site within their vision. This leaves a "bald zone" where they had
been. The agents behind them must wait until the bald spot grows back
under G1 before they have any incentive, under rule M , to move to
those lattice points, and so on for the agents behind them. Hence, the
series of waves.31

.While these waves seem to qualify as emergent structures, the diagonal 
direction in which they propagate is perhaps even more interesting.

Recall that during a single application of M the individual agent can only
move north , south, east, or west. Yet the collective wave is clearly moving 

northeast- a heading unavailable to individuals ! On closer examination
, the collective northeast direction results from a complex

interweaving of agents, none of whom can move in this direction. This
is shown in figure II -8. Here, the local rule precludes individual behavior
mimicking the collective behavior.32

includes Banks and Carley [1994a, 1994b], SaniI. Banks, and Carley [1994], and Carley et
al. [1994].

31. In pure cellular automata (CA) models, waves are phenomena of significant interest
. Recently Sato and Iwasa [1993] have produced these in a CA model of forest ecology.

Recent attempts by mathematical biologists to model the wavelike movement of certain
mammal herds include Gueron and Levin [1993, 1994] and Gueron, Levin, and
Rubenstein [1993]. For an economic model of Nherding," see Kirman [1993].

32. Thus emergence, in this case, is the opposite of self-similarity, in which a given pattern 
is observed on all scales (that is, all orders of magnification) as in fractals.
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Animation ll -6. Emergent Diagonal Waves of Migrators under Rules

({GI }, {M }) from an Initial Distribution of Agents in a Block
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tmod(2'Y)
'Y

is less than 1, then the season is summer (winter). Otherwise the season is winter (summer
). If the season is summer then the growback rate is a units per time interval. If it is

winter it is a units per ~ time intervals. Here the NmodN operator symbolizes the remainder 
resulting from an integer division operation; x mody is the remainder upon division

Figure 11-8. Interweaving Action of Agents

 

33. This rule can be stated fonna Uy. Noting the time by t, for the sites in the top half
(bottom half ) of the sugarscape if the value of the quantity

Seasonal, Migration
As another example of macrobehavior patterns arising from simple local
rules, let us see if our agents can migrate with the seasons. First, to create
artifidal seasons, we split the familiar sugarscape into a north and a south
by drawing an imaginary equator, a horizontal line cutting the sugarscape
in half. For the opening season, the sugarscape grows back at unit rate in
the north and at one-eighth that rate in the south; it is "bloom" season in
the north and "drought" in the south. Then, after fifty time periods, the
situation is reversed; the seasons change. The south grows back at unit
rate and the north regenerates at one-eighth that rate. And so it goes, season 

after season. The general rule can be stated as follows:

Su~arscape seasonal ~rowback rule S I V P' Y: Initially it is summer in
the top half of the sugarscape and winter in the bottom half.
Then, every 'Y time periods the seasons flip - in the region
where it was summer it becomes winter and vice versa. For
each site, if the season is summer then sugar grows back at a
rate of a units per time interval ; if the season is winter then the
growback rate is a units per ~ time intervals.33
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The question we ask now is this: H the simulation is begun with the
same simple agents randomly distributed on the sugarscape, will they
migrate back and forth with the seasons? Animation II - 7 gives the answer.

Again, the agents, operating under the same simple local rule M,
exhibit collective behavior far more complex- and far more realistic-
than we had expected. Yes, we get migrators. But, we also get "hiberna-
tors" ! The high vision ("bird -like ") creatures migrate . The low
vision- low metabolism ("bear-like") creatures hibernate. Agents with
low vision and high metabolism generally die; they are selected against.

Notice, however, that a hibernator born in the south rarely goes north ,
and a hibernator born in the nonh rarely goes south. Northern and
southern hibernators, inshon , would rarely meet and, hence, would
rarely mate. They would fonn , in effect, separate mating pools and, in
evolutionary time, "speciation" would occur.

Pollution: A Negative Externality
So far, in simply grazing the sugarscape, agents have been interacting
with one another indirectly . That is, agents move on the basis of what
they find in their local environment , and what they find is the result of
the actions of other agents.34 Such indirect interactions are a kind of
externality.35 Externalities can be positive or negative. Pollution is an
example of the latter type. A polluter degrades the environment in
which other agents live and in so doing reduces the welfare of other
agents, and possibly its own welfare as well .

There are many ways in which pollution can be added to the sugarscape
. It might be produced by agent movement, agent gathering

activities, agent sugar consumption, sugar growback, or some other
mechanism. There might be many types of pollutants, each produced at
different rates. Pollutants may get transported to other sites at various
rates and could possess a natural growth or decay rate. And in order for
the pollution to be a negative externality it must affect the agent

of x by y. For example, 5 mod 2 = 1. Note that for 'Y larger than the duration of a run the
seasons never change.

34. But the agents do not interact directly. In subsequent chapters the agents interact
with one another, through behaviors such as sex and trade.

35. When the action of one agent affects the welfare- here, the sugar wealth- of a second 
agent and is not constrained socially (through a market, for instance), then anexter-

nalityexists [Campbell, 1987: 57].
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adversely. It could enter the agents' bodies and degrade their vision, say,
or increase their metabolisms, as if it made them sick. Or it could simply
be a negative amenity- the agents could just dislike it and so try to avoid
it whenever possible. In that case it would be as if a second commodity
had been added to the sugarscape, an economic Nbad."

We have chosen a very simple pollution formation rule. There is one
type of pollutant . It is produced by both gathering and consumption
activities, in proportion to the amount of sugar gathered and consumed,
respectively. It accumulates on the sites at which the gathering and consumption 

activities occur. Stated formally, the rule is:

Pollution formation rule P IV~: When sugar quantitys is gathered
from the sugarscape, an amount of production pollution is
generated in quantity as. When sugar amount misconsumed
(metabolized), consumption pollution is generated according to
~m. The total pollution on a site at time t, pt, is the sum of the
pollution present at the previous time, plus the pollution
resulting from production and consumption activities, that is,
pt = pt-l + as + ~m.36

Pollution affects the agents in a very simple way: it has negative
amenity value. That is, they just do not like it ! The simplest way to
incorporate this is to modify the agent movement rule somewhat, to let
the pollution devalue- in the agents' eyes- the sites where it is present.
Instead of moving to the site of maximum sugar, we now specify that
the agents select the site having the maximum sugar to pollution ratio.37
That is, those sites with high sugar levels and low pollution levels are the
most attractive. The modified agent movement rule now reads (with the
changes to the previous rule italicized):

Agent movement rule M , modified for pollution :
. Look out as far as vision permits in the four principal lattice

directions and identify the unoccupied site(s) having the
maximum sugar to pollution ratio;

36. The Sugarscape software system offers a more general pollution formation rule
than this. There can be multiple types of pollutants, each produced at different rates. In
Chapter IV, when investigating the effect of pollution on prices and economic trade activity

, we shall make use of the general pollution formation rule. This more general rule is
described fully in Appendix B, along with the general forms of all other rules.

37. To be precise, the ratio computed is actually s/ (l +p) to preclude division by zero in
the no pollution case.
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38. The simple growback rule Ga does this only trivially since growback rates on any
site are independent of either growback rates or sugar levels on neighboring sites. We have
experimented with growback rules that do, in fact, have this dependence. One such rule
is as follows: if the level of sugar is not 0, then apply Go; however, if the sugar level is 0,
then grow back only if some neighboring site has a nonzero sugar level. It is as if each barren 

site must be "seeded" by neighbors.

48 LIFE AND DEATH ON THE S U G A R' S CAP E

 

. If the maximum sugar to pollution ratio appears on multiple
sites, then select the nearest one;

. Move to this site;

. Collect all the sugar at this new position.

The final ingredient to add is some form of pollution transport.
Without transport or dissipation pollution simply accumulates without
bound at the sites where it is produced. Perhaps the simplest form of
transport is diffusion. Diffusion on a lattice like the sugarscape is simply
implemented as a local averaging procedure. That is, diffusion transports
pollution from sites of high levels to sites of low levels. This can bestat -
ed algorithmically as:

Pollution diffusion rule DIY:
. Each a. time periods and at each site, compute the pollution

flux- the average pollution level over all von Neumann
neighboring sites;

. Each site's flux becomes its new pollution level.

The reader with a knowledge of cellular automata (CA) will notice that
this rule, which relates the pollution on any site to that on other sites,
makes the sugarscape a true CA.38 Note that as a. is increased the rate of
diffusion is decreased, so DI is the fastest diffusion possible.

These simple rules, taken together, prove sufficient to "grow" areasonable 
story of agent response to an agent polluted environment. In animation 
ll -8 agents execute the modified movement rule, M . The sugarscape

grows back according to 61. At t = 50 pollution begins (rule PII is turned
on). Then, at t = 100, diffusion begins (rule DI is switched on).

At first the agents are merrily hiving the sugar hills, as usual. Pollution
levels are low, and the behavior produced by the modified movement
rule is not much different from that produced by the original movement
rule. Eventually, however, pollution levels build up and the agents
progressively abandon the polluted zone. They are forced off the sugar
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39. It is at this point that a clear "tragedy of the commonsw interpretation of life on the
sugarscape manifests itself. Metabolisms are constant and so, for a fixed agent population,
sugar consumption and the pollution it generates are fixed; thus, the only way pollution
levels can be decreased is to reduce the amount of pollution generated through production 

(harvesting) activities. If, for instance, those agent S who harvest more sugar than they
consume in following M were to follow some alternative rule, harvesting only, say, half
the sugar they find beyond their metabolic needs, then overall pollution levels would fall.
While this behavioral rule would make these agents worse off, in comparison to M, by
lowering their income, perhaps all agents could be made better off through side payments.
Alternative rules- institutions- for managing such common propeny resource problems
in general are investigated at length by Ostrom [1990] and Ostrom, Gardner, and Walker
[1994].

40. For a very general analysis along these lines, see Papageorgiou and Smith [1993];
see also Krugman [1996].
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A Social Interpretation

It is possible to give a social intrepretation to the migratory dynamics just
discussed. When seasons change or pollution levels rise, large numbers
of agents migrate to particular regions of the sugarscape. In effect, they

 

peaks, migrating into relatively pristine areas where no pollution from
sugar production has accumulated. However, as agents continue to eat
from their personal accumulations, they progressively despoil even this
area through consumption pollution . Because there is little food for the
agents out in this resource-poor hinterland , competition is intense.
Many die of starvation - the carrying capacity of the polluted
environment is lower.

Subsequently, when diffusion is turned on, the pollution quickly
spreads more or less uniformly around the landscape and many agents
move back to the regions of highest sugar. As they continue to gather
and metabolize sugar, pollution increases while diffusing over the entire
landscape. There is a kind of rising "red tide" that diminish es the welfare
of all agents still alive on the sugarscape.39

It turns out that the same type of dynamic pattern appears when the
externality involved is positive rather than negative. Positive externali-
ties- increasing returns or network externalities, for example- give
agents reasons to associate with one another, to spatially cluster. Of
course, the two types of externalities can be combined: there may be
positive externalities associated with production but negative externali -
"ties associated with consumption. Are cities the "balance points"

between these opposed effects?4O



are environmental refuge es; an environmental catastrophe has struck
their zone and they flood into better areas. In Chapter ill , we introduce
combat. Its intensity can grow when competition for resources becomes
severe. An influx of environmental refuge es suddenly boosts the agent
density in the receiving zone and, naturally, competition for sugar inten -
sifies dramatically. The model suggests, therefore, that environmental
degradation can have serious security implications.41

mmary

These exercises make clear that a wide range of collective structures and
collective patterns of behavior can emerge from the spatio -temporal
interaction of agents operating , individually , under simple local rules .
For example , only one agent rule , M , has been used, and it is about as
primitive a rule as we could construct . Paraphrasing , it amounts to the
instruction : "Look around for the best free site; go there and harvest the
sugar.

" And yet , all sorts of unexpected things emerge from the interaction 
of these agents : basic principles like the existence of environmental

carrying capacities; skewed distributions of wealth ; coherent group
structures like waves that move in directions unavailable to individuals ;
and biological process es like hibernation and migration (refuge es). And
that strikes us as surprising . The nature of the surprise is worth
discussing .

The Surprising Sufficiency of Simple Rules

We have succeeded in I I growing" a number of quite familiar collective
behaviors, such as migration , and familiar macroscopic structures, such
as skewed wealth distributions. And we grow many more familiar
macroscopic entities below. Now, upon first exposure to these familiar
social, or macroscopic, structures - be they migrations, skewed wealth
distributions, or the like- some people say, I I Yes, that looks familiar. But,
I 've seen it before. What 's the surprise?"

The surprise consists precisely in the emergence of familiar
macrostructures from the bottom up - from simple local rules that out-
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41. The conneCtion between environmental change and security is the subjeCt of several 
recent studies by Homer-Dixon [ 1991, 1994] . The mathematical struCture of spatial

patterns resulting from conflicts has been studied by Vickers, Hutson, and Budd [1993] .



wardly appear quite remote from the social, or collective, phenomena
they generate. In short, it is not the emergent macroscopic object per se that is
surprising, but the generative sufficiency of the simple local rules.

Of course, for the model to be of practical use to social scientists, a
minimum requirement is that it generate familiar phenomena with
some fidelity . If the model cannot generate the familiar world as a base
case, then how can we use it to examine the effects of various policies,
for example?

Furthermore, there may be familiar and important social phenomena
that are hard to study with standard tools. For instance, we can do more
than turn pollution on and off in our model; we can track its effect on
prices (see Chapter IV). We find that a pollution -induced shortage of one
good increases its price, an effect described in standard economics texts.
But when we then diffuse the pollutant , relieving the shortage, relative
prices do not return to equilibrium instantly- on the contrary, the
adjustment may take a long time. And adjustment dynamics are difficult
to model within the standard equilibrium framework . Moreover, had
we been unable to get the familiar result (that is, the ilright" price
response to shortage), this lag in adjustment would not be credible.
. The main point , however, is that, when- in subsequent chapters- we

grow a familiar macrostructure, it is the sufficiency of the local rules that
is surprising.

Artificial Social Systems as Laboratories

52 LIFE AND DEATH ON THE SUGARSCAPE

Of course, in this exposition, we presented the rules before carrying out
any simulations. We might have proceeded differently . Imagine that we
had begun the entire discussion by simply running animation II -2,
which shows a buzz of agents "hiving " the sugar mountains, and that we
had then bluntly asked, "What 's happening here?" Would you have
guessed that the agents are all following rule M ? We do not think we
would have been able to divine it . But that really is all that is happening

. Isn't it just possible that something comparably simple is "all that is
happening" in other complex systems, such as stock ~ ~rkets or political
systems? As social scientists, this is the problem we normally confront .
We observe the complex collective- already emerged- behavior, and
we seek simple local rules of individual behavior (for example, maximize 

profit ) that could generate it .
The Sugarscape model can function as a kind of laboratory where we

"grow" fundamental social structures in silica, thereby learning which
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micromechanisms are suffident to generate macrostructures of interest.
Such experiments can lead to hypotheses of sodal concern that may
subsequently be tested statistically against data.

In Chapter ill we expand the behavioral repertoire of our agents,
allowing us to study more complex sodal phenomena.


