You are in Geoinformatics - Creative Commons :: Introduction to Earth System Science Modelling :: Classes 2019
Title | Models | Scenarios | Concepts | Exercises | |
---|---|---|---|---|---|
1 | Introduction | ||||
2 | Programming Basics | ||||
Lua for TerraME | Lua scripts | nil, number, boolean, string, table, function | Lua exercises | ||
3 | Systems Dynamics | Tub (sysdyn) | tub-scenarios (sysdyn) | Model, Event, Timer, Chart | |
4 | Feedbacks | Coffee, PopulationGrowth (sysdyn) | coffee-scenarios, population-scenarios-1, population-scenarios-2 (sysdyn) | Environment, instance of Model | Water in the Dam |
5 | Epidemics | SIR (sysdyn) | infection-scenarios-1, infection-scenarios-2, infection-scenarios-3 (sysdyn) | ||
6 | Daisyworld | Daisyworld (sysdyn) | daisy-calibration (calibration) | MultipleRuns (calibration) | |
7 | Chaos | ChaoticGrowth (sysdyn), Lorenz (sysdyn) | |||
8 | Celular Automata | ||||
Cellular Automata | Life (ca) | Cell, CellularSpace, Neighborhood, Map, Random | |||
Fire in the Forest | Fire (ca) | Fire in the Forest | |||
Runoff | Runoff (gis) |
Diovana, Victor | S. Yassemi, S. Dragićevića, M. Schmidt(2008), Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour. Ecological Modelling, 210(1–2), 71–84 |
Jelena e Victoria | de Almeida et al. (2011) Stochastic cellular automata model for wildland fire spread dynamics |
Renata e Leonardo | Barredo et al. (2003) Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape and Urban Planning Volume 64(3)145-160 |
Cintia | Ghimire et al. (2013) Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. Journal of Hydroinformatics (2012) 15 (3): 676-686. |
Márcia | White, Roger, and Guy Engelen. “Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns.” Environment and planning A 25.8 (1993): 1175-1199. |
Flora | S. G. Berjak, J. W. Hearne (2002) An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Ecological Modelling 148(2):133–15 |
Leticia | C. Beauchemina, J. Samuelb, J. Tuszynskia (2005) A simple cellular automaton model for influenza A viral infections. Journal of Theoretical Biology 232(2) 223–234 |
The final project consists of an implementation and discussion of one of the models available here or the following papers.
Medeiros, L. C., Castilho, C. A. R., Braga, C., de Souza, W. V., Regis, L., Monteiro, A. M. V. (2011). Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLOS neglected tropical diseases, 5(1), e942. | |
M Janssen and N.D. Rollins (2012). Evolution of cooperation in asymmetric commons dilemmas. Journal of Economic Behavior and Organization, 81: 220-229. Available in CoMSES Computational Model Library). | |
S Bandini, F Celada, S Manzoni, G Vizzari (2007). Modelling the immune system: the case of situated cellular agents, Natural Computing, 6(1):19-32. | |
Pe'er et al. Virtual Corridors for Conservation Management, Conservation Biology (2005): 1997–2003 | |
Garcia et al. Predicting evolution of insect resistance to transgenic crops in within field refuge configurations, based on larval movement. Ecol. Complex. 28, 94–103 (2016). | |
Malaquias et al. Larval Dispersal of Spodoptera frugiperda Strains on Bt Cotton: A Model for Understanding Resistance Evolution and Consequences for its Management. Scientific reports. 2017 Nov 23;7(1):16109. | |
Brown, C.; Bakam, I.; Smith. P.; Matthews, R.B., (2016) An agent-based modelling approach to evaluate factors influencing bioenergy crop adoption in north-east Scotland., Global Change Biology Bioenergy, 8, 226-244. |